Advances in Nonlinear Analysis | |
New class of sixth-order nonhomogeneous p ( x )-Kirchhoff problems with sign-changing weight functions | |
article | |
Mohamed Karim Hamdani1  Nguyen Thanh Chung3  Dušan D. Repovš4  | |
[1] Science and Technology for Defense Laboratory LR19DN01, Military Research Center, Tunisia Military School of Aeronautical Specialities;Mathematics Department, University of Sfax, Faculty of Science of Sfax;Department of Mathematics, Quang Binh University;Faculty of Education and Faculty of Mathematics and Physics, University of Ljubljana;Institute of Mathematics | |
关键词: Variable exponents; Kirchhoff type problems; p(x)-triharmonic operator; Sign-changing functions; Concave-convex terms; Ekeland’s variational principle; Multiple solutions; | |
DOI : 10.1515/anona-2020-0172 | |
学科分类:社会科学、人文和艺术(综合) | |
来源: De Gruyter | |
【 摘 要 】
In this paper, we prove the existence of multiple solutions for the following sixth-order p ( x )-Kirchhoff-type problem − M∫ Ω 1p(x)|∇ Δ u|p(x)dxΔ p(x)3u=λ f(x)|u|q(x)− 2u+g(x)|u|r(x)− 2u+h(x)inΩ ,u=Δ u=Δ 2u=0,on∂ Ω , $$\begin{array}{} \displaystyle \begin{cases} -M\left( \int\limits_{\it\Omega} \frac{1}{p(x)}|\nabla {\it\Delta} u|^{p(x)}dx\right){\it\Delta}^3_{p(x)} u = \lambda f(x)|u|^{q(x)-2}u + g(x)|u|^{r(x)-2}u + h(x) &\mbox{in}\quad {\it\Omega}, \\[0.3em] u = {\it\Delta} u = {\it\Delta}^2 u = 0, \quad &\mbox{on}\quad \partial{\it\Omega}, \end{cases} \end{array}$$ where Ω ⊂ ℝ N is a smooth bounded domain, N> 3,Δ p(x)3u:=div (Δ (|∇ Δ u|p(x)− 2∇ Δ u)) $\begin{array}{} N \,\,\gt\,\, 3, {\it\Delta}_{p(x)}^3u\,\, : =\,\, \operatorname{div}\Big({\it\Delta}(|\nabla {\it\Delta} u|^{p(x)-2}\nabla {\it\Delta} u)\Big) \end{array}$ is the p ( x )-triharmonic operator, p , q , r ∈ C ( Ω ), 1 0, λ > 0, g : Ω × ℝ → ℝ is a nonnegative continuous function while f , h : Ω × ℝ → ℝ are sign-changing continuous functions in Ω . To the best of our knowledge, this paper is one of the first contributions to the study of the sixth-order p ( x )-Kirchhoff type problems with sign changing Kirchhoff functions.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202107200000522ZK.pdf | 444KB | download |