Advances in Nonlinear Analysis | |
Optimality of Serrin type extension criteria to the Navier-Stokes equations | |
article | |
Reinhard Farwig1  Ryo Kanamaru2  | |
[1] Department of Mathematics, Darmstadt University of Technology;Department of Pure and Applied Mathematics, School of Fundamental Science and Engineering Waseda University | |
关键词: Serrin type extension criterion; Navier-Stokes equations; bilinear estimate; logarithmic interpolation inequality; | |
DOI : 10.1515/anona-2020-0130 | |
学科分类:社会科学、人文和艺术(综合) | |
来源: De Gruyter | |
【 摘 要 】
We prove that a strong solution u to the Navier-Stokes equations on (0, T ) can be extended if either u ∈ L θ (0, T ; U˙ ∞ ,1/θ ,∞ − α $\begin{array}{} \displaystyle \dot{U}^{-\alpha}_{\infty,1/\theta,\infty} \end{array}$) for 2/ θ + α = 1, 0 < α < 1 or u ∈ L 2 (0, T ; V˙ ∞ ,∞ ,20 $\begin{array}{} \displaystyle \dot{V}^{0}_{\infty,\infty,2} \end{array}$), where U˙ p,β ,σ s $\begin{array}{} \displaystyle \dot{U}^{s}_{p,\beta,\sigma} \end{array}$ and V˙ p,q,θ s $\begin{array}{} \displaystyle \dot{V}^{s}_{p,q,\theta} \end{array}$ are Banach spaces that may be larger than the homogeneous Besov space B˙ p,qs $\begin{array}{} \displaystyle \dot{B}^{s}_{p,q} \end{array}$. Our method is based on a bilinear estimate and a logarithmic interpolation inequality.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202107200000520ZK.pdf | 424KB | download |