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1 Introduction

The motion of a viscous incompressible fluid in R", n > 2, is governed by the Navier-Stokes equations:

u-Au+u-vu+vm=0, xeR", t>0,
divu=0, xeR" t>0, (N-S)

Ul¢=0 = Uo,

where u = (uy(x, t), - -+ , un(x, t)) and 7 = 71(x, t) denote the velocity vector field and the pressure of the fluid
at the point x ¢ R" and time ¢ > 0, respectively, while ug = ug(x) is the given initial vector field for u.

It is known that for every ug € H® = W%2(R") (s = n/2-1), there exists a unique solution u € C([0, T); H®)
to (N-S) for some T > 0. Such a solution is in fact smooth in R" x (0, T). See, for instance Fujita-Kato [9]. It is
an important open question whether T may be taken as T = oo or T < oo. In this direction, Giga [10] gave a
Serrin type criterion, i.e., if the solution u satisfies the condition

T
/Hu(t)H?p dt < oo, % +—=1,n<p<oo, (1.1)
0

TS

then u can be extended to the solution in the class C([0, T'); H%) for some T > T. Later on, the condition (1.1)
was relaxed from the LP-criterion to

T
/Hu(t)Hg,a dt < oo, %+a= 1,0zsa<1 (1.2)
0

Reinhard Farwig, Department of Mathematics, Darmstadt University of Technology, 64289 Darmstadt, Germany, E-mail:
farwig@mathematik.tu-darmstadt.de

Ryo Kanamaru, Department of Pure and Applied Mathematics, School of Fundamental Science and Engineering Waseda Univer-
sity, Tokyo 169-8555, Japan, E-mail: ryo-kana@suou.waseda.jp

80pen Access. © 2021 Reinhard Farwig and Ryo Kanamaru, published by De Gruyter. [(c) EXAN | This work is licensed under the Creative
Commons Attribution alone 4.0 License.


https://doi.org/10.1515/anona-2020-0130

1072 =— R.Farwigand R. Kanamaru, Optimality of Serrin type extension criteria DE GRUYTER

by Kozono-Ogawa-Taniuchi [16] and Kozono-Shimada [17]. In a recent work, Nakao-Taniuchi [22] gave a new
criterion, instead of (1.1) and (1.2) with p = oo and a = 0 (6 = 2), in a such way that

T
[ 1@, dr < . 13)
0

Here, V/;, B > 0, is introduced by
Vg :={f €8;|fllv, <oo},

*
Iflly 2= sup Loty

yeee

where i € § is a radially symmetric function with 17)({) =11in B(0, 1) and 17)(.{) = 01in B(0, 2)¢ and Y y(x) :=
2™ (2N x). This function space Vp is called the Vishik space and admits a continuous embedding L™ C Vp
for each B > 0. The above three criteria are important from a view point of scaling invariance. Indeed, it is
easy to show that if (u, 77) satisfies (N-S), then so does (u,, 77;) for all A > 0, where u;(x, t) := Au(Ax, A%t) and
m(x, t) := A%2m(Ax, A%t). We call a Banach space X scaling invariant for the velocity u with respect to (N-S) if
luallx = |lullx holds for all A > 0. In fact, the spaces L%(0, co; LP) with 2/6 + n/p = 1, L%(0, oo; B:2..) with
2/6+a=1and L?(0, oo; V, /2) are scaling invariant for u with respect to (N-S).

On the other hand, Beale-Kato-Majda [1] and Beirdo da Veiga [2] gave a criterion by means of the vorticity,
i.e., if the solution u satisfies the condition

<p<oo, (14)

I N

T
/||rotu(t)||§,, dt < oo, + g =2,
0

then u can be extended to a solution in the class C([0, T'); H*(R™)) for some T' > T. Later on, the condition
(1.4) was relaxed from the L?-criterion to

n
+—=2,nspsoo (1.5)
p b

DI N

T
[ rotuoify e <o,
0

by Kozono-Ogawa-Taniuchi [16]. Moreover, Nakao-Taniuchi [21] gave a similar type of the criterion as (1.3),
instead of (1.4) and (1.5) with p = oo (6 = 1), in such a way that

T
/ [rotu(t)||y, dt < .
0

Note that Vg admits the following continuous embeddings in the case 8 = 1:
L™ c bmo C BY, . C V3.

Futhermore, the author [12] improved the Bg,w-criterion (1.5) to

n
+—=2,r<ps<oo (1.6)
» p

I N

T

/Hrotu(t)“‘?/o Jdt <o,
p,oo,

0

for L"(n < r < oo) strong solutions to (N-S). Here, V;, 0152 Banach space introduced by Definition
2.1 and has a continuous embedding Bp .. C V) 4. The above criteria by means of the vorticity are
also important from a view point of scaling invariance. Indeed, since rotu, = A?rot u(Ax, A%t), the spaces
L%(0, 003 LP), L9(0, 003 BY ), LY(0, oo; Vg,w,e) with 2/6 + n/p = 2 and L(0, oo; V1) are scaling invariant for
the vorticity with respect to (N-S).
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The aim of this paper is to improve the extension criterion (1.2) to the Navier-Stokes equations by means
of Banach spaces which are larger than B;‘,{w in the same way that the condition (1.5) was relaxed to (1.6). In
fact, we prove that if the solution u to (N-S) on (0, T) satisfies the condition either

T
/Hu(t)H%,u dt<oo, 24a=1,0<a<1 (17)
o g
0
or
T
/ @, dt<oo, 18)
00,00,2

0

then u can be extended to a solution in the class C([0, T'); HS(R™)) for some T > T. Here, U;, 5,0 15 @ Banach
space introduced by Definition 2.2 and has the following continuous embeddings:

. . . 2
Boioo C Vegoop C Ul1jpe gta=1,0<a<l.

Hence, we see that (1.7) and (1.8) may be regarded as a weaker condition than (1.2). Moreover, note that the
spaces L%(0, oo; U;?fue,oo) with 2/6 + a = 1 and L*(0, o0; V2, __, ,) are also scaling invariant for solutions u to

(N-S). In order to obtain our extension principle, we need a logarithmic interpolation inequality by means of
p.Bot
Pl = € (1411, TogPle + Il i )

This is related to the Brezis-Gallouet-Wainger inequality given in Brezis-Gallouet [5] and Brezis-Wainger [6].
Several inequalities of Brezis-Gallouet-Wainger type were established in [1], [7], [8], [11], [12], [15], [16], [19],
[20], [21], [22], [23], [24], [25]. Moreover, we prove that U;’ B0 is the weakest normed space that satisfies such a
logarithmic interpolation inequality. Thus, roughly speaking, new conditions (1.7) and (1.8) may be regarded
as optimal Serrin type criteria that guarantee a priori estimates of H® strong solutions to (N-S) with double
exponential growth form.

The present paper is organized as follows. In the next section, we shall state our main results. In section
3 and 4, proofs of our main results are established.

2 Results

2.1 Function spaces

We first introduce some notation. Let $ = $(R") be the set of all Schwartz functions on R", and §' the set of
tempered distributions. The L”-norm on R" is denoted by || - || . We recall the Littlewood-Paley decomposition
and use the functions i, ¢; € 8, j € Z, such that

N 1, <1,
po-45
0, |&|=2,
¢ =D& - P28,  F;@) = $(&/2).
Let Z := {f € 8;D*f(0) = O for all @ € N"} and Z denote the dual space of 2. We note that 2 can be identified
with the quotient space 8'/P of 8’ with respect to the space of polynomials, P. Furthermore, the homogeneous
Besov space B} ; = {f € Z;||f||3s < oo} is defined by the norm
p.q

1
q

S *flIE ] . g #es

IFls, = { \iez

sup 2”°||; * £ p, q = oo.
jeZ
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See Bergh-Lofstrom [3, Chapter 6.3] and Triebel [26, Chapter 5] for details. Let Cg’(R") denote the set of all C*°
functions with compact support in R" and Cg,, := {¢ € (C5’(R"))";div¢ = 0}. Concerning Sobolev spaces
we use the notation H*(R") for all s € R. Then Hj is the closure of C5’, with respect to H*-norm. In Section 4
we will also use homogeneous Sobolev spaces H5(R") and note that H* = B , forall s € R.

We now introduce Banach spaces V;’ 7.0 and UIS,’ B0 which are larger than the homogeneous Besov spaces
Bf,,q. These spaces may be regarded as modified versions of spaces defined by Nakao-Taniuchi [22] and Vishik
[27].

Definition 2.1. Lets € R, 1 < p,q, 0 < oo and let {¢;};Z_., be the Littlewood-Paley decomposition. Then,
VIS, q oR™) :={f € P I llys , < oo} is introduced by the norm
T P-4,

=

(w21 £15)

sup lel ’ # oo’
.= N=1,2,- 87
IFly;
. :
sup Na max2®(¢; * f||p, 0 = oo.
N=1,2, |jlN

Definition 2.2. Lets,f € R, 1 < p,0 < oo and let {¢;}7~_, be the Littlewood-Paley decomposition. Then,

';ﬂ JRY = {f e HfHUS/3 < oo} is equipped with the norm
B, S po

(S 21ty *£15)

su , O s
Nt NP 7o
gy, =
max|; .y 2°(|¢b; * fllp
sup , 0 =00
N=1,2,- NB
We see from the following proposition that V;’ geand U ;, 5,0 are extensions of B} ; and V;’ 4,00 respectively.

Proposition 2.3.
(i) Letsc R, 1<sp,g<ocand 1< 6 <0, <q < 0. Then, it holds that

_Yss PSS _ YsS ‘7S ‘7S
{O} - Vp,q,93 - Bp,q - Vp,q,q - Vp,q,é)z c Vp,q,el'

(ii) Lets € R, 1 < p,0 <ooand B; <0 < B, < B3. Then, it holds that

_ 18 NS _ TS F1S 1S
{0} = Up,ﬂl,o - BP’U = Up,o,0 Up,ﬁz,o - Up.ﬁa,o'

(iii) Lets,f € R, 1< p, q, 0 < oo, ﬁ=%—%and1 < 01 € 0, < oo. Then, it holds that

7S —_T7S . 7S 'S
,q,0 = Up,ﬁ,@ and Up,ﬁ,ol - Up,ﬂ,o'z'

Proof. We easily prove V;’ 2.6, C VISJ’ .6, I (i) by the standard and the reverse Holder’s inequality. The others
follow from the definitions of B} 4, V3 , yand U5 ; . O

It follows by Proposition 2.3 (i) and (iii) that
Bio,m C V:o,oo,e C U:O,l/e,oo (2.1)

fors € Rand 1 < 6 < co. We observe from the following examples that the continuous embeddings (2.1) are
proper if s > -nand 1 < 6 < oo, which is important in terms of Theorem 2.9.



DE GRUYTER

R. Farwig and R. Kanamaru, Optimality of Serrin type extension criteria == 1075

Example 2.4. (1) The continuous embedding B%, .. C V%, , ,is properifs > -nand 1 < 6 < co. We now
introduce a distribution f € V3, _ g\ B o fors > —nand 1 < 6 < co. Let f € 2 defined as

T L
G

o, otherwise.

Indeed, since f € L* holds, we obtain f € Z'. We easily see that

1 * flloo = / $i(OF ) de = / $OF ) de
R"

2-1g||<2

= 25K )y forj= (K0 (k=1,2,---),

< 27K ongdlly forj= [k +1 (k=1,2,--),
=0 forj € Z\ Uiy ... {K 1, [kKO1] £ 1.
Hence, it holds that

6+1 ~
fllgs 2 sup 20T pony * flloo = sup Kl]la = oo (2.2)
= k=1,2, k=1,2,-

On the other hand, forany N = 1, 2, - - -, there exists ky € N such that kjo\,” < N < (ky + 1)%+1. Therefore, we
obtain

. ky+1 [k 1+1
9 9 N
> 27l flles ), Zi

js6 0
Y ey 29 A1
|jlN

kN+l [k9+l]+1 150 /~— k6+1 ~ 0
D 2 2902k b))

:[k9+1]_1

kn+1
- Czkzl K < Clky + 1)%1 < k't < CN,

where C is dependent only on n, s and 6. Thus, it follows that

=

(S 2%l * £112)
N

Dl
=

CiN
Ifllys = sup < sup
000 N=1,2,.

— < oo, 2.3)
N=1,2,-- N?

=

From (2.2) and (2.3), we get f € V2, _ 5\ B% o

(2) The continuous embedding VS, 4 = US, 1,9 C US, 1o . is also properifs > -nand 1 < 6 < oo We
now introduce a distribution g € U, 1/6,00 \ Vfo,wla fors >-nand1<6<oo.Letg c 2 defined as

kg%l 2—(H+S)[k9+1], 2[k9+1]—1 < ‘£| < 2[k9+1]+1 (k — 1, 2, .. )’
8(8) =
o, otherwise.

Indeed, since g € L*° holds, we obtain g € Z'. We easily see that

lI¢; * 8l = /‘i’j(f)é(f)d€= / $1(O8E) dE
R 2-1<|g|<2i

= 2K B forj = (K9] (k=1,2,--4),
< 27K onp 5 Bl forj= [k 1 (k=1,2,--),

=0 forj € Z\ Uiy o, {[K%], k%] £ 13,
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Forany N = 1,2, ---, we take ky € N such that k§! < N < (ky + 1)1, Then, it holds that

1<ksky

2 0+1
Z 2150”4’1’ *ngq s Z 5sli ]0H¢[k9*1] *gch =C Z K01
lilsN

1SkSkN
> C1k§? 2 Crlky + )92 2 CN&E,
where C; is dependent only on n and 6. Hence, we have

1
[
1 js6 0
Ifllgs = sup | &> 27l$;* flle
VN,N,B N=1,2,- N Z J

> sup C%NH%‘l):oo. (2.4)
- N=1,2,-
lilsN
On the other hand, it follows that
max 2°||@; * glleo < max max  25|d; * gleo
max 2% ¢y * gl s max - omax = 2"|g; gl
< max max ZjSZ"S[k6+1]2”k9%91||(2>H1
1sks<ky+1 j=[k0+1],[k6+1]+1
0+1 8+1 8+1 1
<C; max k7 =Cylky+1)7 <CokyJ <C,N7,
1<ksky+1
where C, is dependent only on n and s. Thus, we obtain
. 14
maxjjcy 2°(|¢; * flle CINv
lgllye = sup —UNE T T o gup 22 <o (2.5)
co1ffo0  N=1,2,. N N=1,2,- Nb
From (2.4) and (2.5), we get g € Uio,ue w \ Vo g

2.2 Logarithmic interpolation inequalities and optimality

Theorem 2.5. (i) Let sg, 1,52 € Rsatisfy sy < Sg < Sp,let0 < B <ooand 1 < p, 0 < o. Then there exists a
positive constant C depending only on sy, S1, S, but not on p, 8, o such that
B
Fllgg, = € (1+ Wl To8PCe + Ifllg_g))
forallf € By'.. N B3,

(2.6)
X satisfies the following conditions:

(if) Let so € R,0 < B <ooand 1 < p, 0 < oo, and let X be a normed space of distributions on Z. Assume that
(C1) X2

(C2) there exists a constant K1 > 0 such that
If¢-Wlx < Kilflx forallf € Xandally € R";
(C3) there exists a constant K, > 0 such that

lp* flx < Kz llpll1Ifllx forallp € Zandallf € X;
(C4) there exist s1, S, € Rsatisfy s1 < Sg < s and K3 > 0 such that

Fllg, = K5 (1+11flx1og” (e + Ifllgn gz ) forallf e Xnz
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7S
Then, X <> U p?ﬁ, o holds.

Remark 2.6. (1) In the first part of Theorem 2.5, the assumption s; < sqg < s, is essential. If either of s; or s;
tends to s, then the constant C appearing on the right hand side diverges to infinity.

(2) By Proposition 2.3 (ii), we observed that the following continuous embeddings hold for s; < sg < s>
and 3 = 0:

Byl NByiw C By C Uy

Thus, (2.6) may be regarded as an interpolation inequality.

(3) From Theorem 2.5 (i), we see that U;‘j 0.0 satisfies conditions (C1)-(C4). Hence, Theorem 2.5 (ii) implies
that U;‘j 0.6 is the weakest normed space that satisfies (C1)-(C4).

(4) By Proposition 2.3 (iii), we see that Theorem 2.5 covers the result given by the author [12]. Indeed, by
setting B = 4 - %, 0=0(1<qg<oo, 1580 <gq)in(2.6), it holds that

11
Fllgs, < € (1+ fllgeo 108777 (e+1fllz iz ))

forallf € B}, N By...

2.3 Serrin type regularity criteria for Navier-Stokes systems

Definition 2.7. Lets > n/2 — 1 and let uy € Hj. A measurable function u on R" x (0, T) is called a strong
solution to (N-S) in the class CLs(0, T) if

(i) u € ([0, T); H5) n C*((0, T); H) N C((0, T); H§);

(ii) u satisfies (N-S) with some distribution rt such that Vit € C((0, T); H).

Remark 2.8. Fors > n/2-1, the existence of a strong solution to (N-S) in the class CLs(0, T) has been proven
in Fujita-Kato [9], Kato [14] and Giga [10].

Our result on extension of strong solutions now reads as follows:

Theorem2.9. (i) LetO<a< 1, s>n/2-aandletuy € H5. Assume that u is a strong solution to (N-S) in the
class CLs(0, T). If the solution u satisfies

T
2
[l deco,  Fra-, (27)
0

then u can be extended to a strong solution to (N-S) in the class CLs(0, T') forsome T > T.
(ii) Let s > n/2 and let uy € H§. Assume that u is a strong solution to (N-S) in the class CLs(0, T). If the
solution u satisfies

T
[ 1@, de <o, 8)
0

then u can be extended to a strong solution to (N-S) in the class CLs(0, T') forsome T > T.

Remark 2.10. (1) Let O < a < 1. As is mentioned Example 2.4, we have proper embeddings Bz%., C V;ffw’ o C
i —1/6,0 and hence Thorem 2.9 (i) covers the extension criterion in B4, given by Kozono-Shimada [17] for
s > n/2 - a. Indeed, if the solution u satisfies either

T
2

/||u(T)Hg;£m dr < oo, Sras 1,

0
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or

T
0 2
/- < ’ n = 13
/ Hu(T)HVN,N,g dr < oo gta
0

then the estimate (2.8) is easily obtained, so that the solution can be extended beyond t = T.

(2) From Example 2.4, the proper embeddings B% . ¢ V2, ., € U2, ; , ., hold. Hence, Theorem 2.9 (i)
may be regarded as an extension of the B&,W-criterion given by Kozono-Ogawa-Taniuchi [16] for s > n/2. On
the other hand, it seems to be difficult to obtain the same result as in Theorem 2.9 (ii) under the condition

T
/||u(r)\|§,0 dr < oo.
00,1/2,00
0

This stems from inapplicability of Lemma 4.1 with a = 0.

As an immediate consequence of the above Theorem 2.9, we have the following blow-up criteria of strong
solutions:

Corollary 2.11. (i) LetO < a < 1, s> n/2 -aand let uy ¢ H;. Assume that u is a strong solution to (N-S) in the
class CLs(0, T). If T is maximal, i.e., u cannot be extended in the class CLs(0, T') for any T > T, then it holds
that

T
0 2
/ ”u(t)HU:fue,m dt = oo, 5 +a=1.
0

In particular, we have lim sup 7 |[u(t)]| /-« P
00,1/8,00
(ii) Let s > n/2 and let ug € H. Assume that u is a strong solution to (N-S) in the class CLs(0, T). If T is
maximal, then it holds that

T
2 _
/ U@, dt=oo,
0

In particular, lim sup, 1 [[u(t)|| ;o , =

3 Proof of Theorem 2.5

We first prove Theorem 2.5 (i). To this aim, we use arguments given in Kozono-Ogawa-Taniuchi [16], Nakao-
Taniuchi [21] and Kanamaru [12].

Proof of Theorem 2.5 (i). We first consider the case 1 < ¢ < oo. By the definition of the Besov space, we
obtain

Fllgen, = | D2l *fllg

JEZ
1
<> 20 flp + D> 2%l *flle + | D 20N *flp (3.1)
j<-N >N |jlsN

=251+Sz+83
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Concerning Sy, it holds that
Sue 0 2%y * flp 2
j<-N

< fllge, > 276070 (3.2)

j<-N
~(so-s1)N
< €12 N f ey

where C; is dependent only on sg and s;. For S,, in the same way as (3.2), we have
Sy < o275 £ B2 (3.3)

where C, is dependent only on sy and s5.
We finally estimate S3. By Definition 2.2, it clearly follows that

Sy < NP|f|lss0 . (3.4)
Up,ﬁﬂ
Combining (3.2), (3.3) and (3.4) with (3.1), we obtain
—s«N
P, = € (2 1 lgze_rge + NPl ) (3:5)

for s« := min(so - 51,52 — So) and C = C(so, 1, S2). In the case ||f][gs1 -z <1, wetake N = 1in (3.5). Then
P, P,
it holds that
Flgg, = € (1+ 1l ) 5 € (1+ fll g, Tog%(e+ flgzy g )

this is the desired estimate (2.6). In the case ||f||gs1 > > 1,wetake N = 1+ [log(e +{Ifllgs1 g2 )/ (s+log 2)}
Dso° Dso° D,>° Ds°
in (3.5), where [-] denotes the Gauf3 symbol. Then, we get (2.6) again.

In the case 0 = oo, we obtain, instead of (3.1),

Ifll g0 < sup 2 ||b; * fllp + sup 27°°||; * f|p + max 27°°(|p; * £
P j<-N >N lilsN (36)
=: 31 + 5'2 + 5‘3

Therefore, using the same argument as in the previous case 1 < ¢ < oo, we get (2.6). O
In order to prove the second part of Thorem 2.5, we use the following Lemma.
Lemma3.1. Letp € Z and Let X be a normed space. Assume that X satisfies conditions (C1) and (C2) given in

Theorem 2.5 (ii). Then, it holds that
p*gel”™ forallgeX. (3.7)

Proof. By (C1), we get that for all ¢ € Z, there exists a constant C = C(¢) > 0 such that

g(¢)] < Cligllx forallg € X. (3.8)

Assume that (3.8) does not hold. Then, there is ¢po € Z with the following property: for each positive integer
N, there is a gy € X such that

lgn(¢o)| > Nl|gn|lx- (3.9)

Letting hy := N%ﬁ; H (e X), we obtain ||hy||x = N~z > 0as N - oo, which implies hy - 0 in X. By (C1), this
NI||X

convergence holds in Z'. On the other hand, by (3.9),

|hn(o)| = 7|g1N(¢0)| >NZ>o0 asN - oo,
N2 ||gnllx

which contradicts hy - 0in Z. Thus we get (3.8).
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We finally prove (3.7). Note that
p*g(x) = g(txp) = T-x8(P),

where T,f(y) = f(y - x) and f(y) = f(~y). Hence, from (3.8) and (C2), we obtain

p*g)| < C)l|IT-xgllx < C'p, K1)gllx forall x € R",

which means (3.7). O

We are now in position to prove the second part of Theorem 2.5 and follow arguments given by Nakao-Taniuchi
[21] and the author [12].

Proof of Theorem 2.5 (ii). Subsituting f = - into the inequality given in (C4), we obtain

____h
EHhHBIS,%mﬂBIS,’N

1
Inllsg, <K (<lhlgy g+ Ihlclog® (e+ 7)) G:10)

forallh € XnZandalle > 0.Letg € Xand @y := stN ¢j(e 2)forN=1,2,---.ByLemma3.1l, dy*g € L™.
Hence, since @y * g = Opy,q * Oy * g, we have Oy * g € Z. On the other hand, it holds from (C3) that

|Dn * gllx < K2[|Pnll1Igllx < K2([Ynll1 + [W-n-1ll)lIglIx < 2Kz [P 1l1 118> (3.11)

where 1);(x) := 2Mph(27x). Thus, we also get Dy * g € X. Substituting h = @y * g(€ X N 2) into (3.10), we
obtain )
| * gl < Kael| Oy *gllges_ie, + K@y * glixlog? (e+ ). G12)

We first consider the case 1 < ¢ < o.
The left-hand side of (3.12) can be estimated from below as follows. Noting that supp @y c {27V < |¢| <
2V we get

| gl = S0 2y * D+l
' |j|sN+1

(3.13)
IR VRS o R
ljlsN-1 j=N,N+1 j=-N,-N-1
Concerning the second term on the right-hand side of (3.13), we obtain
> 2Ny Dy gllp 2 270N ST gy oy <l
j=N,N+1 j=N,N+1
o
2 210l NS002 | N gy x oy * gl
j=N,N+1 (3.14)
o
> 2—(|so|+1)02Nsoa Z ¢j * (DN *g
j=N,N+1 p

= 7P gy g 5.

Asin (3.14), similar estimates hold when replacing N and N + 1 by —-N and -N - 1, respectively. Summarizing
(3.13), (3.14) we obtain that

| D *gHB;% > 2~ (Isol+1) Z 2]'500||¢i “glo | . (3.15)
lilsN
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Next, we estimate the first term on the right-hand side of (3.12). From Young’s inequality and Holder’s
inequality, it holds that

|®x "8l = sup 2| * Dy * gl
’ jl<N+1

< sup 2%(|¢jl1]|Pn * gllp
|i|sN+1

< €121V N " 270 0)% b+ g
lilsN

< C12(|50\+\51|)N Z 1 Z 2f50(7||¢j *gHg

jlsN lilsN

(3.16)

a
Ql=

< C2Uso SN [ 7 gisod) g x|
<N

where C; depends only on n and s;. In the same way as (3.16), we have

Dy *gHBSz < C22(|So\+\52|+1)N 2}'500||¢j * gHg , (3.17)
" N
]S

where C, depends only on n and s,. In the end, from (3.16) and (3.17), we get that

1

1N * glligs i, = €27 | 20 2% gl (318)
ljlsN

for s := |so| + max(|s1|, |s2|) + 1 and C3 = C3(n, 51, S).
Thus, combining (3.11), (3.15) and (3.18) with (3.12), we obtain

o a

. * . 1
S D0y rallp | < Ce2N (D027 rslp |+ Cliglxlog” (e+ )
lilsN lilsN

forallN=1,2,---,alle > 0and C = C(n, sg, S1, S2, K2, K3). Taking € =
we get

1 . .
S from the above inequality,

ST P gi*gly | < CNPlglxforallN =1,2,--- .
ljl=N
This implies
I8l =< Cliglx forallg € X,

. : ' 1S0
i.e., the embedding X < Up,ﬁ,a'

In the case 0 = oo, we obtain, instead of (3.13),

Iy * gl o = max ( max 2715 * gllp, max 2% * Oy * gllp,

max  2%||¢; * Dy * )
;. max p; * Pn * 8lip

Therefore, by using the same argument as in the case 1 < g < oo, we get
IIgHU;oﬁw < Cllgllx forall g € X.

This proves Theorem 2.5 (ii). O
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4 Proof of Theorem 2.9

In order to prove Theorem 2.9, we need bilinear estimates which are related to Leibniz’ rule. Therefore, we
first recall the following two lemmata.

Lemma 4.1 ([13], Proposition 2.2). Let1 < p,q < oo, Sg > 0, @ > 0 and B > 0. Moreover, assume that 1 <
P1,P2,P3, P4 < oo satisfy 1/p = 1/py + 1/p2 = 1/ps + 1/p4. Then, there exists a constant C(n, sg, a, ) > 0
such that

178l = € (Wl el .+ Nl ) @)

P,

forallf € BY* N B,P

P3,0°

and g € B2 NBYE.

Lemma 4.2 ([18], Lemma 1). Let 1 < p < oo and Let a, B € N". Then, there exists a constant C(n, p, a, 8) > 0
such that

1% - Ogllp < € (I lamoll(-4) “7" gllp +11(=4) “*" fllp1gllsmo (4.2

forall f,g € BMO n Wel*IBl.p,

We are now in a position to prove Theorem 2.9 and follow arguments given by Kozono-Ogawa-Taniuchi [16],
Kozono-Shimada [17], Kozono-Taniuchi [18] and the author [12].

Proof of Theorem 2.9. (i) It is well-known that the local existence time T of the strong solution to (N-S) can

be estimated from below as
C(n,s)

2 >

luol| ="

see e.g. [10] and [14]. Hence by the standard argument of continuation of local solutions, it suffices to establish
the following a priori estimate:

Tx >

gost<T

T
sup [|u(®)]| g < C [ s, T, [uleo)| g / lu(@)f_ dr (4.3)
€o

for some &g € (0, T), where [-] denotes the Gauf3 symbol.
Applying 0¥ with |k| =0,1,---,[s] + 1 to (N-S), we have

Otvi — Avy + Vi = Fy, (4.4)

where vy := oku, g := o¥mand Fy := -0%(u - Vu) = -0V - u ® u. Taking the inner product in L? between
(4.4) and 2vy, and then integrating the resulting identity on the time interval (&g, t), we obtain
¢ t
V(I3 +2 / 19vi||3 dt < [|vi(eo)||3 + 2 / |(Fi, violdt, e <t<T, (4.5)
&o )
where
(Fio vidl = 1((-4) 20"V - u @ u, (-4) 3 vi)| < Cllu ® Ull gropri-al[Viell -

By the bilinear estimate Lemma 4.1 (41) withp=q =2, p1 =ps=2,pr=p3 =o0, So =1+ k|- a, B =a, it
follows that
UR U sieik-a € CllU||pa [[U|| 2101k -
4 @ wlpre = Clullge_l1ull e
Together with an interpolation inequality applied to ||v|| ;. we conclude from Young’s inequality that
|Frs vidl < Cllutlle 1l gaoin Vil il 2™
1+a

< Clullge_IVVRll3™Ivill3 4:6)

0 > l1+a 2
< Cllullge_[Viellz + ==Vl
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where 6 = ﬁ—a, C depends on n, s, a. Inserting (4.6) to the right-hand side of (4.5), summing for |k| =
0,1,--+,[s] + 1, and absorbing the terms || Vv,||5 from the right-hand side by the left-hand side, we obtain
that

t
2 2 6 2
[u(®)l s < [[u€o)llgss + C/ [u(D)lpe_[[u(@[s01 AT,

€o

forall g < t < T. By using Gronwall’s inequality, we get

t
(Ol s < [u(€0) s exp | € [ [u(@llf. dr | . “.7)
0

&
Now, applying the logarithmic interpolation inequality (2.6) with sq = —-a, s; = -n/2 (< -1),s, = s —
n/2(>-a), B=1/6, p=0=ootof = u(r), it follows that
1
@l <€ (141D, Tog? (+ U@ lgnnpe2)) - (48)
By the embeddings B ., C B2, F 500 C BSM? and H® BS . =L*nB5. cBY . nBS ., wehave
U@l gz gene < ClU g s < Clu@llp; < Cllu@l]gs. (4.9)

Hence, by (4.7), (4.8) and (4.9), it holds that
t
|u(®)] grsr < ||u(€o)| giser €XP C/ (1 + |\u(r)||?]_al/6 log(e + \|u(r)||H[5]+1)) dr |,

€o
where C = C(n, s, a). Therefore, with g(t) = log(e + ||u(t)|| gis11), We obtain

t

g(t) < g(eg) + C/ (1 + \|u(r)||%xl/9’wg(r)) dr.

&o
Then Gronwall’s inequality implies that

t
8(t) < gleo) exp C/ (1 + ““(T)”?f;“l,ew) ar

€o

forall g9 < t < T. Thus, we get the estimate (4.3) in the form

exp <CT+C ST u@)| o dr)
sup [[u(®)|| i < (e + |[uleo)|| i) €0 Yeotjo /)
gost<T

(ii) By the same argument as in the above proof, it suffices to establish the following a priori estimate:

gost<T

T
sup [[u(®)|gs <C | n,s, T, Hu(So)HH[s]ﬂ,/Hu(T)H%,gmsz (4.10)
€o

for some g € (0, T).
Applying ok with k| =0,1,---,[s] + 1 to (N-S), we have

OtV —Avi +u - Vv + Vqy = Gy, (4.17)

where v; := 0u, g; := o¥mrand G := - D1k 1]<]k|-1 (*)0*'u - v(0'u). Testing (4.11) with v, and integrating
the resulting identity on the time interval (g, t), we obtain

t t
[vi(©lI3 +2 / [ VVll3 dT < [[vi(go)]]5 + 2 / (G, vi)|dr, eo<t<T. (4.12)

€o €o
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Now the bilinear estimate (4.2) with p = 2, |a| = |k| - |I|, |B] = |l| + 1, implies that
LY
1Gill2 = Cllullpmoll(=4) = ull2- (4.13)

From (4.13) and Young’s inequality we conclude that

1K1
(G, vidl < |Gll2lIvill2 < Cllullsmoll(=4) = ull2]|vill2
(4.14)

2 2, 1 2
< Cllullgmollvill2 + §||VVkH2,

with C = C(n, s). Inserting (4.14) to the right-hand side of (4.12) and summing for |k| = 0, 1,---,[s] + 1, we
obtain that

t
2 2 2 2
14O < [uleo)|2ar + C / 14 Bt 1| d,
€o

forall gy < t < T. By using Gronwall’s inequality and then the continuous embedding BSO,Z C BMO, we get

t
1)1 < (o) s exp | C / ()30 dr

&o

(4.15)
t
< [uteo) s exp | € [ u@ dr
&o ’

Now, by applying the logarithmic interpolation inequality (2.6) with s; = -n/2 < s = 0 < s, = s - n/2,

B=1/2, p=occand o =2 to f = u(1), it follows that

1

Julgo , = € (1+ [u@llgo _ 10g? (e + [u@lgmzrpene) ) - (4.16)
Here, we note that Ufjo,l 12 = V2, ... holds due to Proposition 2.3 (iii). Hence, combining (4.15), (4.16) and

(4.9), it holds that

t
@ = o) s exp | € [ (1+[uC@F _ 10g(es [u@ln) dr |

&o
where C = C(n, s). Therefore, letting g(t) = log(e + ||u(t)|| gs1+1), We obtain

t

g(t) < gleo) + C/ (1 + ||u(T)H2VS°,m’2g(T)) dr,

)

which by Gronwall’s inequality implies that
t
80 <geo)exp | € [ (1+[u@lfy ) dr
€0

for all gg < t < T. Thus, we get the estimate

exp (CT+CfT lu(@)]20 dr)
sup [[u(®)|| g < (e + [[u(eo)|| i) ‘0 Vooy00,2
gost<T

which is the desired estimate (4.10). O
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