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Abstract:We prove that a strong solution u to the Navier-Stokes equations on (0, T) can be extended if either
u ∈ Lθ(0, T; U̇−α∞,1/θ,∞) for 2/θ + α = 1, 0 < α < 1 or u ∈ L2(0, T; V̇0

∞,∞,2) , where U̇sp,β,σ and V̇
s
p,q,θ are Banach

spaces thatmaybe larger than thehomogeneousBesov space Ḃsp,q. Ourmethod is based onabilinear estimate
and a logarithmic interpolation inequality.
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1 Introduction

The motion of a viscous incompressible �uid in Rn , n ≥ 2, is governed by the Navier-Stokes equations:
∂tu − ∆u + u ·∇u +∇π = 0, x ∈ Rn , t > 0,
div u = 0, x ∈ Rn , t > 0,
u|t=0 = u0,

(N-S)

where u = (u1(x, t), · · · , un(x, t)) and π = π(x, t) denote the velocity vector �eld and the pressure of the �uid
at the point x ∈ Rn and time t > 0, respectively, while u0 = u0(x) is the given initial vector �eld for u.

It is known that for every u0 ∈ Hs ≡ W s,2(Rn) (s ≥ n/2−1), there exists aunique solution u ∈ C([0, T);Hs)
to (N-S) for some T > 0. Such a solution is in fact smooth in Rn × (0, T). See, for instance Fujita-Kato [9]. It is
an important open question whether T may be taken as T = ∞ or T < ∞. In this direction, Giga [10] gave a
Serrin type criterion, i.e., if the solution u satis�es the condition

T∫
0

‖u(t)‖θLp dt < ∞, 2
θ + np = 1, n < p ≤ ∞, (1.1)

then u can be extended to the solution in the class C([0, T ′);Hs) for some T ′ > T . Later on, the condition (1.1)
was relaxed from the Lp-criterion to

T∫
0

‖u(t)‖θḂ−α∞,∞
dt < ∞, 2

θ + α = 1, 0 ≤ α < 1 (1.2)
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by Kozono-Ogawa-Taniuchi [16] and Kozono-Shimada [17]. In a recent work, Nakao-Taniuchi [22] gave a new
criterion, instead of (1.1) and (1.2) with p = ∞ and α = 0 (θ = 2), in a such way that

T∫
0

‖u(τ)‖2V1/2 dτ < ∞. (1.3)

Here, Vβ, β > 0, is introduced by
Vβ := {f ∈ S′; ‖f‖Vβ < ∞},

‖f‖Vβ := sup
N=1,2,...

‖ψN * f‖∞
Nβ

,

where ψ ∈ S is a radially symmetric function with ψ̂(ξ ) = 1 in B(0, 1) and ψ̂(ξ ) = 0 in B(0, 2)c and ψN(x) :=
2nNψ(2Nx). This function space Vβ is called the Vishik space and admits a continuous embedding L∞ ⊂ Vβ
for each β > 0. The above three criteria are important from a view point of scaling invariance. Indeed, it is
easy to show that if (u, π) satis�es (N-S), then so does (uλ , πλ) for all λ > 0, where uλ(x, t) := λu(λx, λ2t) and
πλ(x, t) := λ2π(λx, λ2t). We call a Banach space X scaling invariant for the velocity u with respect to (N-S) if
‖uλ‖X = ‖u‖X holds for all λ > 0. In fact, the spaces Lθ(0,∞; Lp) with 2/θ + n/p = 1, Lθ(0,∞; Ḃ−α∞,∞) with
2/θ + α = 1 and L2(0,∞;V1/2) are scaling invariant for u with respect to (N-S).

On the other hand, Beale-Kato-Majda [1] and Beirão da Veiga [2] gave a criterion bymeans of the vorticity,
i.e., if the solution u satis�es the condition

T∫
0

‖rot u(t)‖θLp dt < ∞, 2
θ + np = 2, n2 < p ≤ ∞, (1.4)

then u can be extended to a solution in the class C([0, T ′);Hs(Rn)) for some T ′ > T . Later on, the condition
(1.4) was relaxed from the Lp-criterion to

T∫
0

‖rot u(t)‖θḂ0p,∞ dt < ∞, 2
θ + np = 2, n ≤ p ≤ ∞ (1.5)

by Kozono-Ogawa-Taniuchi [16]. Moreover, Nakao-Taniuchi [21] gave a similar type of the criterion as (1.3),
instead of (1.4) and (1.5) with p = ∞(θ = 1), in such a way that

T∫
0

‖rot u(t)‖V1 dt < ∞.

Note that Vβ admits the following continuous embeddings in the case β = 1:

L∞ ⊂ bmo ⊂ B0∞,∞ ⊂ V1.

Futhermore, the author [12] improved the Ḃ0p,∞-criterion (1.5) to

T∫
0

‖rot u(t)‖θV̇0
p,∞,θ

dt < ∞, 2
θ + np = 2, r ≤ p ≤ ∞ (1.6)

for Lr (n < r < ∞) strong solutions to (N-S). Here, V̇ sp,q,θ is a Banach space introduced by De�nition
2.1 and has a continuous embedding Ḃ0p,∞ ⊂ V̇0

p,∞.θ. The above criteria by means of the vorticity are
also important from a view point of scaling invariance. Indeed, since rot uλ = λ2rot u(λx, λ2t), the spaces
Lθ(0,∞; Lp), Lθ(0,∞; Ḃ0p,∞), Lθ(0,∞; V̇0

p,∞,θ) with 2/θ + n/p = 2 and L1(0,∞;V1) are scaling invariant for
the vorticity with respect to (N-S).
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The aim of this paper is to improve the extension criterion (1.2) to the Navier-Stokes equations by means
of Banach spaces which are larger than Ḃ−α∞,∞ in the same way that the condition (1.5) was relaxed to (1.6). In
fact, we prove that if the solution u to (N-S) on (0, T) satis�es the condition either

T∫
0

‖u(t)‖θU̇−α∞,1/θ,∞
dt < ∞, 2

θ + α = 1, 0 < α < 1 (1.7)

or
T∫

0

‖u(t)‖2V̇0
∞,∞,2

dt < ∞, (1.8)

then u can be extended to a solution in the class C([0, T ′);Hs(Rn)) for some T ′ > T . Here, U̇sp,β,σ is a Banach
space introduced by De�nition 2.2 and has the following continuous embeddings:

Ḃ−α∞,∞ ⊂ V̇−α∞,∞,θ ⊂ U̇
−α
∞,1/θ,∞

2
θ + α = 1, 0 ≤ α < 1.

Hence, we see that (1.7) and (1.8) may be regarded as a weaker condition than (1.2). Moreover, note that the
spaces Lθ(0,∞; U̇−α∞,1/θ,∞) with 2/θ + α = 1 and L2(0,∞; V̇0

∞,∞,2) are also scaling invariant for solutions u to
(N-S). In order to obtain our extension principle, we need a logarithmic interpolation inequality by means of
U̇sp,β,σ:

‖f‖Ḃsp,σ ≤ C
(
1 + ‖f‖U̇sp,β,σ log

β(e + ‖f‖Ḃs1p,∞∩Ḃs2p,∞ )
)
.

This is related to the Brezis-Gallouet-Wainger inequality given in Brezis-Gallouet [5] and Brezis-Wainger [6].
Several inequalities of Brezis-Gallouet-Wainger type were established in [1], [7], [8], [11], [12], [15], [16], [19],
[20], [21], [22], [23], [24], [25]. Moreover, we prove that U̇sp,β,σ is the weakest normed space that satis�es such a
logarithmic interpolation inequality. Thus, roughly speaking, new conditions (1.7) and (1.8) may be regarded
as optimal Serrin type criteria that guarantee a priori estimates of Hs strong solutions to (N-S) with double
exponential growth form.

The present paper is organized as follows. In the next section, we shall state our main results. In section
3 and 4, proofs of our main results are established.

2 Results

2.1 Function spaces

We �rst introduce some notation. Let S = S(Rn) be the set of all Schwartz functions on Rn, and S′ the set of
tempered distributions. The Lp-norm onRn is denoted by ‖·‖p.We recall the Littlewood-Paley decomposition
and use the functions ψ, ϕj ∈ S, j ∈ Z, such that

ψ̂(ξ ) =
{
1, |ξ | ≤ 1,
0, |ξ | ≥ 2,

ϕ̂(ξ ) := ψ̂(ξ ) − ψ̂(2ξ ), ϕ̂j(ξ ) := ϕ̂(ξ /2j).

LetZ := {f ∈ S;Dα f̂ (0) = 0 for all α ∈ Nn} andZ′ denote the dual space ofZ. We note thatZ′ can be identi�ed
with the quotient space S′/P of S′ with respect to the space of polynomials,P. Furthermore, the homogeneous
Besov space Ḃsp,q := {f ∈ Z′; ‖f‖Ḃsp,q < ∞} is de�ned by the norm

‖f‖Ḃsp,q :=



∑
j∈Z

2jsq‖ϕj * f‖qp

 1
q

, q ≠ ∞,

sup
j∈Z

2js‖ϕj * f‖p , q = ∞.
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See Bergh-Löfström [3, Chapter 6.3] and Triebel [26, Chapter 5] for details. Let C∞0 (Rn) denote the set of all C∞

functions with compact support in Rn and C∞0,σ := {ϕ ∈ (C∞0 (Rn))n; divϕ = 0}. Concerning Sobolev spaces
we use the notation Hs(Rn) for all s ∈ R. Then Hsσ is the closure of C∞0,σ with respect to Hs-norm. In Section 4
we will also use homogeneous Sobolev spaces Ḣs(Rn) and note that Ḣs = Ḃs2,2 for all s ∈ R.

We now introduce Banach spaces V̇ sp,q,θ and U̇
s
p,β,σ which are larger than the homogeneous Besov spaces

Ḃsp,q. These spacesmay be regarded asmodi�ed versions of spaces de�ned byNakao-Taniuchi [22] and Vishik
[27].

De�nition 2.1. Let s ∈ R, 1 ≤ p, q, θ ≤ ∞ and let {ϕj}∞j=−∞ be the Littlewood-Paley decomposition. Then,
V̇ sp,q,θ(R

n) := {f ∈ Z′; ‖f‖V̇ sp,q,θ < ∞} is introduced by the norm

‖f‖V̇ sp,q,θ :=


sup

N=1,2,···

(∑
|j|≤N 2

jsθ‖ϕj * f‖θp
) 1

θ

N
1
θ −

1
q

, θ ≠ ∞,

sup
N=1,2,···

N
1
q max

|j|≤N
2js‖ϕj * f‖p , θ = ∞.

De�nition 2.2. Let s, β ∈ R, 1 ≤ p, σ ≤ ∞ and let {ϕj}∞j=−∞ be the Littlewood-Paley decomposition. Then,
U̇sp,β,σ(R

n) := {f ∈ Z′; ‖f‖U̇sp,β,σ < ∞} is equipped with the norm

‖f‖U̇sp,β,σ :=


sup

N=1,2,···

(∑
|j|≤N 2

jsσ‖ϕj * f‖σp
) 1

σ

Nβ
, σ ≠ ∞,

sup
N=1,2,···

max|j|≤N 2js‖ϕj * f‖p
Nβ

, σ = ∞.

We see from the following proposition that V̇ sp,q,θ and U̇
s
p,β,σ are extensions of Ḃsp,q and V̇ sp,q,θ, respectively.

Proposition 2.3.
(i) Let s ∈ R, 1 ≤ p, q ≤ ∞ and 1 ≤ θ1 ≤ θ2 ≤ q < θ3. Then, it holds that

{0} = V̇ sp,q,θ3 ⊂ Ḃ
s
p,q = V̇ sp,q,q ⊂ V̇ sp,q,θ2 ⊂ V̇

s
p,q,θ1 .

(ii) Let s ∈ R, 1 ≤ p, σ ≤ ∞ and β1 < 0 ≤ β2 ≤ β3. Then, it holds that

{0} = U̇sp,β1 ,σ ⊂ Ḃ
s
p,σ = U̇sp,0,σ ⊂ U̇sp,β2 ,σ ⊂ U̇

s
p,β3 ,σ .

(iii) Let s, β ∈ R, 1 ≤ p, q, θ ≤ ∞, β̃ = 1
θ −

1
q and 1 ≤ σ1 ≤ σ2 ≤ ∞. Then, it holds that

V̇ sp,q,θ = U̇
s
p,β̃,θ and U̇sp,β,σ1 ⊂ U̇

s
p,β,σ2 .

Proof. We easily prove V̇ sp,q,θ2 ⊂ V̇
s
p,q,θ1 in (i) by the standard and the reverse Hölder’s inequality. The others

follow from the de�nitions of Ḃsp,q , V̇ sp,q,θ and U̇
s
p,β,σ.

It follows by Proposition 2.3 (i) and (iii) that

Ḃs∞,∞ ⊂ V̇ s∞,∞,θ ⊂ U̇
s
∞,1/θ,∞ (2.1)

for s ∈ R and 1 ≤ θ < ∞. We observe from the following examples that the continuous embeddings (2.1) are
proper if s > −n and 1 ≤ θ < ∞, which is important in terms of Theorem 2.9.
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Example 2.4. (1) The continuous embedding Ḃs∞,∞ ⊂ V̇ s∞,∞,θ is proper if s > −n and 1 ≤ θ < ∞. We now
introduce a distribution f ∈ V̇ s∞,∞,θ \ Ḃ

s
∞,∞ for s > −n and 1 ≤ θ < ∞. Let f ∈ Z′ de�ned as

f̂ (ξ ) :=

k2
−(n+s)[kθ+1], 2[k

θ+1]−1 ≤ |ξ | ≤ 2[k
θ+1]+1 (k = 1, 2, · · · ),

0, otherwise.

Indeed, since f̂ ∈ L∞ holds, we obtain f ∈ Z′. We easily see that

‖ϕj * f‖∞ =
∫
Rn

ϕ̂j(ξ )f̂ (ξ ) dξ =
∫

2j−1≤|ξ |≤2j+1

ϕ̂j(ξ )f̂ (ξ ) dξ


= 2−s[k

θ+1]k‖ϕ̂‖1 for j = [kθ+1] (k = 1, 2, · · · ),

≤ 2−s[k
θ+1]2nk‖ϕ̂‖1 for j = [kθ+1] ± 1 (k = 1, 2, · · · ),

= 0 for j ∈ Z \
⋃
k=1,2,···{[k

θ+1], [kθ+1] ± 1}.

Hence, it holds that
‖f‖Ḃs∞,∞

≥ sup
k=1,2,···

2s[k
θ+1]‖ϕ[kθ+1] * f‖∞ = sup

k=1,2,···
k‖ϕ̂‖1 = ∞. (2.2)

On the other hand, for any N = 1, 2, · · · , there exists kN ∈ N such that kθ+1N ≤ N < (kN + 1)θ+1. Therefore, we
obtain ∑

|j|≤N

2jsθ‖ϕj * f‖θ∞ ≤
∑kN+1

k=1

∑[kθ+1]+1

j=[kθ+1]−1
2jsθ‖ϕj * f‖θ∞

≤
∑kN+1

k=1

∑[kθ+1]+1

j=[kθ+1]−1
2jsθ(2−s[k

θ+1]2nk‖ϕ̂‖1)θ

= C
∑kN+1

k=1
kθ ≤ C(kN + 1)θ+1 ≤ Ckθ+1N ≤ CN,

where C is dependent only on n, s and θ. Thus, it follows that

‖f‖V̇ s∞,∞,θ
= sup
N=1,2,···

(∑
|j|≤N 2

jsθ‖ϕj * f‖θ∞
) 1

θ

N 1
θ

≤ sup
N=1,2,···

C
1
θ N

1
θ

N 1
θ

< ∞. (2.3)

From (2.2) and (2.3), we get f ∈ V̇ s∞,∞,θ \ Ḃ
s
∞,∞.

(2) The continuous embedding V̇ s∞,∞,θ = U̇
s
∞,1/θ,θ ⊂ U̇

s
∞,1/θ,∞ is also proper if s > −n and 1 ≤ θ < ∞. We

now introduce a distribution g ∈ U̇s∞,1/θ,∞ \ V̇
s
∞,∞,θ for s > −n and 1 ≤ θ < ∞. Let g ∈ Z′ de�ned as

ĝ(ξ ) :=

k
θ+1
θ 2−(n+s)[k

θ+1], 2[k
θ+1]−1 ≤ |ξ | ≤ 2[k

θ+1]+1 (k = 1, 2, · · · ),

0, otherwise.

Indeed, since ĝ ∈ L∞ holds, we obtain g ∈ Z′. We easily see that

‖ϕj * g‖∞ =
∫
Rn

ϕ̂j(ξ )ĝ(ξ ) dξ =
∫

2j−1≤|ξ |≤2j+1

ϕ̂j(ξ )ĝ(ξ ) dξ


= 2−s[k

θ+1]k
θ+1
θ ‖ϕ̂‖1 for j = [kθ+1] (k = 1, 2, · · · ),

≤ 2−s[k
θ+1]2nk θ+1

θ ‖ϕ̂‖1 for j = [kθ+1] ± 1 (k = 1, 2, · · · ),

= 0 for j ∈ Z \
⋃
k=1,2,···{[k

θ+1], [kθ+1] ± 1}.
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For any N = 1, 2, · · · , we take kN ∈ N such that kθ+1N ≤ N < (kN + 1)θ+1. Then, it holds that∑
|j|≤N

2jsθ‖ϕj * g‖θ∞ ≥
∑

1≤k≤kN

2s[k
θ+1]θ‖ϕ[kθ+1] * g‖

θ
∞ = C1

∑
1≤k≤kN

kθ+1

≥ C1kθ+2N ≥ C1(kN + 1)θ+2 ≥ C1N
θ+2
θ+1 ,

where C1 is dependent only on n and θ. Hence, we have

‖f‖V̇ s∞,∞,θ
= sup
N=1,2,···

(
1
N
∑
|j|≤N

2jsθ‖ϕj * f‖θ∞

) 1
θ

≥ sup
N=1,2,···

C
1
θ
1 N

1
θ

(
θ+2
θ+1−1

)
= ∞. (2.4)

On the other hand, it follows that

max
|j|≤N

2js‖ϕj * g‖∞ ≤ max
1≤k≤kN+1

max
j=[kθ+1],[kθ+1]±1

2js‖ϕj * g‖∞

≤ max
1≤k≤kN+1

max
j=[kθ+1],[kθ+1]±1

2js2−s[k
θ+1]2nk

θ+1
θ ‖ϕ̂‖1

≤ C2 max
1≤k≤kN+1

k
θ+1
θ = C2(kN + 1)

θ+1
θ ≤ C2k

θ+1
θ
N ≤ C2N

1
θ ,

where C2 is dependent only on n and s. Thus, we obtain

‖g‖U̇s∞,1/θ,∞
= sup
N=1,2,···

max|j|≤N 2js‖ϕj * f‖∞
N 1

θ
≤ sup
N=1,2,···

C
1
θ
2 N

1
θ

N 1
θ

< ∞. (2.5)

From (2.4) and (2.5), we get g ∈ U̇s∞,1/θ,∞ \ V̇
s
∞,∞,θ.

2.2 Logarithmic interpolation inequalities and optimality

Theorem 2.5. (i) Let s0, s1, s2 ∈ R satisfy s1 < s0 < s2, let 0 ≤ β < ∞ and 1 ≤ p, σ ≤ ∞. Then there exists a
positive constant C depending only on s0, s1, s2, but not on p, β, σ such that

‖f‖Ḃs0p,σ ≤ C
(
1 + ‖f‖U̇s0p,β,σ log

β(e + ‖f‖Ḃs1p,∞∩Ḃs2p,∞ )
)

(2.6)

for all f ∈ Ḃs1p,∞ ∩ Ḃs2p,∞.

(ii) Let s0 ∈ R, 0 ≤ β < ∞ and 1 ≤ p, σ ≤ ∞, and let X be a normed space of distributions on Z. Assume that
X satis�es the following conditions:

(C1) X ↪→ Z′;
(C2) there exists a constant K1 > 0 such that

‖f (· − y)‖X ≤ K1‖f‖X for all f ∈ X and all y ∈ Rn;

(C3) there exists a constant K2 > 0 such that

‖ρ * f‖X ≤ K2‖ρ‖1‖f‖X for all ρ ∈ Z and all f ∈ X;

(C4) there exist s1, s2 ∈ R satisfy s1 < s0 < s2 and K3 > 0 such that

‖f‖Ḃs0p,σ ≤ K3
(
1 + ‖f‖X logβ

(
e + ‖f‖Ḃs1p,∞∩Ḃs2p,∞

))
for all f ∈ X ∩ Z.
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Then, X ↪→ U̇s0p,β,σ holds.

Remark 2.6. (1) In the �rst part of Theorem 2.5, the assumption s1 < s0 < s2 is essential. If either of s1 or s2
tends to s0, then the constant C appearing on the right hand side diverges to in�nity.

(2) By Proposition 2.3 (ii), we observed that the following continuous embeddings hold for s1 < s0 < s2
and β ≥ 0:

Ḃs1p,∞ ∩ Ḃs2p,∞ ⊂ Ḃs0p,σ ⊂ U̇s0p,β,σ .
Thus, (2.6) may be regarded as an interpolation inequality.

(3) From Theorem 2.5 (i), we see that U̇s0p,q,θ satis�es conditions (C1)-(C4). Hence, Theorem 2.5 (ii) implies
that U̇s0p,q,θ is the weakest normed space that satis�es (C1)-(C4).

(4) By Proposition 2.3 (iii), we see that Theorem 2.5 covers the result given by the author [12]. Indeed, by
setting β = 1

θ −
1
q , σ = θ (1 ≤ q ≤ ∞, 1 ≤ θ ≤ q) in (2.6), it holds that

‖f‖Ḃs0p,θ ≤ C
(
1 + ‖f‖V̇ s0p,q,θ log

1
θ −

1
q
(
e + ‖f‖Ḃs1p,∞∩Ḃs2p,∞

))
for all f ∈ Ḃs1p,∞ ∩ Ḃs2p,∞.

2.3 Serrin type regularity criteria for Navier-Stokes systems

De�nition 2.7. Let s > n/2 − 1 and let u0 ∈ Hsσ. A measurable function u on Rn × (0, T) is called a strong
solution to (N-S) in the class CLs(0, T) if

(i) u ∈ C([0, T);Hsσ) ∩ C1((0, T);Hsσ) ∩ C((0, T);Hs+2σ );
(ii) u satis�es (N-S) with some distribution π such that∇π ∈ C((0, T);Hs).

Remark 2.8. For s > n/2−1, the existence of a strong solution to (N-S) in the class CLs(0, T) has been proven
in Fujita-Kato [9], Kato [14] and Giga [10].

Our result on extension of strong solutions now reads as follows:

Theorem 2.9. (i) Let 0 < α < 1, s > n/2 − α and let u0 ∈ Hsσ. Assume that u is a strong solution to (N-S) in the
class CLs(0, T). If the solution u satis�es

T∫
0

‖u(t)‖θU̇−α∞,1/θ,∞
dt < ∞, 2

θ + α = 1, (2.7)

then u can be extended to a strong solution to (N-S) in the class CLs(0, T ′) for some T ′ > T.
(ii) Let s > n/2 and let u0 ∈ Hsσ. Assume that u is a strong solution to (N-S) in the class CLs(0, T). If the

solution u satis�es
T∫

0

‖u(t)‖2V̇0
∞,∞,2

dt < ∞, (2.8)

then u can be extended to a strong solution to (N-S) in the class CLs(0, T ′) for some T ′ > T.

Remark 2.10. (1) Let 0 < α < 1. As is mentioned Example 2.4, we have proper embeddings Ḃ−α∞,∞ ⊂ V̇−α∞,∞,θ ⊂
U̇−α∞,1/θ,∞ and hence Thorem 2.9 (i) covers the extension criterion in Ḃ−α∞,∞ given by Kozono-Shimada [17] for
s > n/2 − α. Indeed, if the solution u satis�es either

T∫
0

‖u(τ)‖θḂ−α∞,∞
dτ < ∞, 2

θ + α = 1,
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or
T∫

0

‖u(τ)‖θV̇−α∞,∞,θ
dτ < ∞, 2

θ + α = 1,

then the estimate (2.8) is easily obtained, so that the solution can be extended beyond t = T.
(2) From Example 2.4, the proper embeddings Ḃ0∞,∞ ⊂ V̇0

∞,∞,2 ⊂ U̇0
∞,1/2,∞ hold. Hence, Theorem 2.9 (ii)

may be regarded as an extension of the Ḃ0∞,∞-criterion given by Kozono-Ogawa-Taniuchi [16] for s > n/2. On
the other hand, it seems to be di�cult to obtain the same result as in Theorem 2.9 (ii) under the condition

T∫
0

‖u(τ)‖2U̇0
∞,1/2,∞

dτ < ∞.

This stems from inapplicability of Lemma 4.1 with α = 0.

As an immediate consequence of the above Theorem 2.9, we have the following blow-up criteria of strong
solutions:

Corollary 2.11. (i) Let 0 < α < 1, s > n/2 − α and let u0 ∈ Hsσ. Assume that u is a strong solution to (N-S) in the
class CLs(0, T). If T is maximal, i.e., u cannot be extended in the class CLs(0, T ′) for any T ′ > T, then it holds
that

T∫
0

‖u(t)‖θU̇−α∞,1/θ,∞
dt = ∞, 2

θ + α = 1.

In particular, we have lim supt→T ‖u(t)‖U̇−α∞,1/θ,∞
= ∞.

(ii) Let s > n/2 and let u0 ∈ Hsσ. Assume that u is a strong solution to (N-S) in the class CLs(0, T). If T is
maximal, then it holds that

T∫
0

‖u(t)‖2V̇0
∞,∞,2

dt = ∞.

In particular, lim supt→T ‖u(t)‖V̇0
∞,∞,2

= ∞.

3 Proof of Theorem 2.5

We �rst prove Theorem 2.5 (i). To this aim, we use arguments given in Kozono-Ogawa-Taniuchi [16], Nakao-
Taniuchi [21] and Kanamaru [12].

Proof of Theorem 2.5 (i). We �rst consider the case 1 ≤ σ < ∞. By the de�nition of the Besov space, we
obtain

‖f‖Ḃs0p,σ =

∑
j∈Z

2js0σ‖ϕj * f‖σq

 1
σ

≤
∑
j<−N

2js0‖ϕj * f‖p +
∑
j>N

2js0‖ϕj * f‖p +

∑
|j|≤N

2js0σ‖ϕj * f‖σp

 1
σ

(3.1)

=: S1 + S2 + S3
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Concerning S1, it holds that

S1 ≤
∑
j<−N

2js1‖ϕj * f‖p 2j(s0−s1)

≤ ‖f‖Ḃs1p,∞
∑
j<−N

2j(s0−s1)

≤ C12−(s0−s1)N‖f‖Ḃs1p,∞ ,

(3.2)

where C1 is dependent only on s0 and s1. For S2, in the same way as (3.2), we have

S2 ≤ C22−(s2−s0)N‖f‖Ḃs2p,∞ , (3.3)

where C2 is dependent only on s0 and s2.
We �nally estimate S3. By De�nition 2.2, it clearly follows that

S3 ≤ Nβ‖f‖U̇s0p,β,σ . (3.4)

Combining (3.2), (3.3) and (3.4) with (3.1), we obtain

‖f‖Ḃs0p,σ ≤ C
(
2−s*N‖f‖Ḃs1p,∞∩Ḃs2p,∞ + Nβ‖f‖U̇s0p,β,σ

)
(3.5)

for s* := min(s0 − s1, s2 − s0) and C = C(s0, s1, s2). In the case ‖f‖Ḃs1p,∞∩Ḃs2p,∞ ≤ 1, we take N = 1 in (3.5). Then
it holds that

‖f‖Ḃs0p,σ ≤ C
(
1 + ‖f‖U̇s0p,β,σ

)
≤ C
(
1 + ‖f‖U̇s0p,β,σ log

β(e + ‖f‖Ḃs1p,∞∩Ḃs2p,∞ )
)
;

this is the desired estimate (2.6). In the case ‖f‖Ḃs1p,∞∩Ḃs2p,∞ > 1, we take N = 1+
[
log(e + ‖f‖Ḃs1p,∞∩Ḃs2p,∞ )/(s* log 2)

]
in (3.5), where [·] denotes the Gauß symbol. Then, we get (2.6) again.

In the case σ = ∞, we obtain, instead of (3.1),

‖f‖Ḃs0p,∞ ≤ supj<−N
2js0‖ϕj * f‖p + sup

j>N
2js0‖ϕj * f‖p + max

|j|≤N
2js0‖ϕj * f‖p

=: S̃1 + S̃2 + S̃3
(3.6)

Therefore, using the same argument as in the previous case 1 ≤ σ < ∞, we get (2.6).

In order to prove the second part of Thorem 2.5, we use the following Lemma.

Lemma 3.1. Let ρ ∈ Z and Let X be a normed space. Assume that X satis�es conditions (C1) and (C2) given in
Theorem 2.5 (ii). Then, it holds that

ρ * g ∈ L∞ for all g ∈ X. (3.7)

Proof. By (C1), we get that for all ϕ ∈ Z, there exists a constant C = C(ϕ) > 0 such that

|g(ϕ)| ≤ C‖g‖X for all g ∈ X. (3.8)

Assume that (3.8) does not hold. Then, there is ϕ0 ∈ Z with the following property: for each positive integer
N, there is a gN ∈ X such that

|gN(ϕ0)| > N‖gN‖X . (3.9)

Letting hN := gN
N

1
2 ‖gN‖X

(∈ X), we obtain ‖hN‖X = N−
1
2 → 0 as N → ∞, which implies hN → 0 in X. By (C1), this

convergence holds in Z′. On the other hand, by (3.9),

|hN(ϕ0)| =
|gN(ϕ0)|
N 1

2 ‖gN‖X
> N

1
2 → ∞ as N → ∞,

which contradicts hN → 0 in Z′. Thus we get (3.8).
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We �nally prove (3.7). Note that
ρ * g(x) = g(τx ρ̃) = τ−xg(ρ̃),

where τx f (y) = f (y − x) and f̃ (y) = f (−y). Hence, from (3.8) and (C2), we obtain

|ρ * g(x)| ≤ C(ρ)‖τ−xg‖X ≤ C′(ρ, K1)‖g‖X for all x ∈ Rn ,

which means (3.7).

Wearenow inposition to prove the secondpart of Theorem2.5 and followarguments givenbyNakao-Taniuchi
[21] and the author [12].

Proof of Theorem 2.5 (ii). Subsituting f = h
ε‖h‖Ḃs1p,∞∩Ḃs2p,∞

into the inequality given in (C4), we obtain

‖h‖Ḃs0p,σ ≤ K3
(
ε‖h‖Ḃs1p,∞∩Ḃs2p,∞ + ‖h‖X logβ

(
e + 1

ε
))

(3.10)

for all h ∈ X∩Z and all ε > 0. Let g ∈ X andΦN :=
∑

|j|≤N ϕj (∈ Z) forN = 1, 2, · · · . By Lemma3.1,ΦN*g ∈ L∞.
Hence, since ΦN * g = ΦN+1 * ΦN * g, we have ΦN * g ∈ Z. On the other hand, it holds from (C3) that

‖ΦN * g‖X ≤ K2‖ΦN‖1‖g‖X ≤ K2(‖ψN‖1 + ‖ψ−N−1‖1)‖g‖X ≤ 2K2‖ψ‖1‖g‖X , (3.11)

where ψj(x) := 2jnψ(2jx). Thus, we also get ΦN * g ∈ X. Substituting h = ΦN * g (∈ X ∩ Z) into (3.10), we
obtain

‖ΦN * g‖Ḃs0p,σ ≤ K3ε‖ΦN * g‖Ḃs1p,∞∩Ḃs2p,∞ + K3‖ΦN * g‖X logβ
(
e + 1

ε

)
. (3.12)

We �rst consider the case 1 ≤ σ < ∞.
The left-hand side of (3.12) can be estimated from below as follows. Noting that supp Φ̂N ⊂ {2−N−1 ≤ |ξ | ≤

2N+1}, we get

‖ΦN * g‖σḂs0p,σ =
∑

|j|≤N+1

2js0σ‖ϕj * ΦN * g‖σp

=
( ∑

|j|≤N−1

+
∑

j=N,N+1
+

∑
j=−N,−N−1

)
2js0σ‖ϕj * ΦN * g‖σp .

(3.13)

Concerning the second term on the right-hand side of (3.13), we obtain∑
j=N,N+1

2js0σ‖ϕj * ΦN * g‖σp ≥ 2−|s0|σ2Ns0σ
∑

j=N,N+1
‖ϕj * ΦN * g‖σp

≥ 2−|s0|σ2Ns0σ2−σ
 ∑
j=N,N+1

‖ϕj * ΦN * g‖p

σ

≥ 2−(|s0|+1)σ2Ns0σ
∥∥∥∥∥ ∑
j=N,N+1

ϕj * ΦN * g

∥∥∥∥∥
σ

p

= 2−(|s0|+1)σ2Ns0σ‖ϕN * g‖σp .

(3.14)

As in (3.14), similar estimates hold when replacing N and N +1 by −N and −N −1, respectively. Summarizing
(3.13), (3.14) we obtain that

‖ΦN * g‖Ḃs0p,σ ≥ 2
−(|s0|+1)

∑
|j|≤N

2js0σ‖ϕj * g‖σp

 1
σ

. (3.15)
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Next, we estimate the �rst term on the right-hand side of (3.12). From Young’s inequality and Hölder’s
inequality, it holds that

‖ΦN * g‖Ḃs1p,∞ = sup
|j|≤N+1

2js1‖ϕj * ΦN * g‖p

≤ sup
|j|≤N+1

2js1‖ϕj‖1‖ΦN * g‖p

≤ C12|s1|N
∑
|j|≤N

2−js02js0‖ϕj * g‖p

≤ C12(|s0|+|s1|)N
∑

|j|≤N

1

 1
σ′
∑

|j|≤N

2js0σ‖ϕj * g‖σp

 1
σ

≤ C12(|s0|+|s1|+1)N
∑

|j|≤N

2js0σ‖ϕj * g‖σp

 1
σ

,

(3.16)

where C1 depends only on n and s1. In the same way as (3.16), we have

‖ΦN * g‖Ḃs2p,∞ ≤ C22
(|s0|+|s2|+1)N

∑
|j|≤N

2js0σ‖ϕj * g‖σp

 1
σ

, (3.17)

where C2 depends only on n and s2. In the end, from (3.16) and (3.17), we get that

‖ΦN * g‖Ḃs1p,∞∩Ḃs2p,∞ ≤ C32
s*N

∑
|j|≤N

2js0σ‖ϕj * g‖σp

 1
σ

(3.18)

for s* := |s0| + max(|s1|, |s2|) + 1 and C3 = C3(n, s1, s2).
Thus, combining (3.11), (3.15) and (3.18) with (3.12), we obtain∑

|j|≤N

2js0σ‖ϕj * g‖σp

 1
σ

≤ Cε2s
*N

∑
|j|≤N

2js0σ‖ϕj * g‖σp

 1
σ

+ C‖g‖X logβ
(
e + 1

ε

)
for all N = 1, 2, · · · , all ε > 0 and C = C(n, s0, s1, s2, K2, K3). Taking ε = 1

2C2s*N
, from the above inequality,

we get ∑
|j|≤N

2js0σ‖ϕj * g‖σp

 1
σ

≤ CNβ‖g‖X for all N = 1, 2, · · · .

This implies
‖g‖U̇s0p,β,σ ≤ C‖g‖X for all g ∈ X,

i.e., the embedding X ↪→ U̇s0p,β,σ.
In the case σ = ∞, we obtain, instead of (3.13),

‖ΦN * g‖Ḃs0p,∞ = max
(
max
|j|≤N−1

2js0‖ϕj * g‖p , max
j=N,N+1

2js0‖ϕj * ΦN * g‖p ,

max
j=−N,−N−1

2js0‖ϕj * ΦN * g‖p
)
.

Therefore, by using the same argument as in the case 1 ≤ σ < ∞, we get

‖g‖U̇s0p,β,∞ ≤ C‖g‖X for all g ∈ X.

This proves Theorem 2.5 (ii).
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4 Proof of Theorem 2.9

In order to prove Theorem 2.9, we need bilinear estimates which are related to Leibniz’ rule. Therefore, we
�rst recall the following two lemmata.

Lemma 4.1 ([13], Proposition 2.2). Let 1 ≤ p, q ≤ ∞, s0 > 0, α > 0 and β > 0. Moreover, assume that 1 ≤
p1, p2, p3, p4 ≤ ∞ satisfy 1/p = 1/p1 + 1/p2 = 1/p3 + 1/p4. Then, there exists a constant C(n, s0, α, β) > 0
such that

‖f · g‖Bs0p,q ≤ C
(
‖f‖Bs0+αp1,q

‖g‖B−αp2,∞ + ‖f‖B−βp3,∞
‖g‖Bs0+βp4,q

)
(4.1)

for all f ∈ Bs0+αp1 ,q ∩ B
−β
p3 ,∞ and g ∈ B−αp2 ,∞ ∩ B

s0+β
p4 ,q .

Lemma 4.2 ([18], Lemma 1). Let 1 < p < ∞ and Let α, β ∈ Nn. Then, there exists a constant C(n, p, α, β) > 0
such that

‖∂α f · ∂βg‖p ≤ C
(
‖f‖BMO‖(−∆)

|α|+|β|
2 g‖p + ‖(−∆)

|α|+|β|
2 f‖p‖g‖BMO

)
(4.2)

for all f , g ∈ BMO ∩W |α|+|β|,p .

We are now in a position to prove Theorem 2.9 and follow arguments given by Kozono-Ogawa-Taniuchi [16],
Kozono-Shimada [17], Kozono-Taniuchi [18] and the author [12].

Proof of Theorem 2.9. (i) It is well-known that the local existence time T* of the strong solution to (N-S) can
be estimated from below as

T* ≥
C(n, s)

‖u0‖
2

s−(n/2−1)
Hs

,

see e.g. [10] and [14]. Hence by the standard argument of continuation of local solutions, it su�ces to establish
the following a priori estimate:

sup
ε0≤t<T

‖u(t)‖H[s]+1 ≤ C

n, s, α, T, ‖u(ε0)‖H[s]+1 ,
T∫

ε0

‖u(τ)‖θU̇−α∞,∞,θ
dτ

 (4.3)

for some ε0 ∈ (0, T), where [·] denotes the Gauß symbol.
Applying ∂k with |k| = 0, 1, · · · , [s] + 1 to (N-S), we have

∂tvk − ∆vk +∇qk = Fk , (4.4)

where vk := ∂ku, qk := ∂kπ and Fk := −∂k(u ·∇u) = −∂k∇ · u ⊗ u. Taking the inner product in L2 between
(4.4) and 2vk, and then integrating the resulting identity on the time interval (ε0, t), we obtain

‖vk(t)‖22 + 2
t∫

ε0

‖∇vk‖22 dτ ≤ ‖vk(ε0)‖22 + 2
t∫

ε0

|(Fk , vk)|dτ, ε0 ≤ t < T, (4.5)

where
|(Fk , vk)| = |((−∆)−

α
2 ∂k∇ · u ⊗ u, (−∆)

α
2 vk)| ≤ C‖u ⊗ u‖Ḃ1+|k|−α2,2

‖vk‖Ḣα .

By the bilinear estimate Lemma 4.1 (4.1) with p = q = 2, p1 = p4 = 2, p2 = p3 = ∞, s0 = 1 + |k| − α, β = α, it
follows that

‖u ⊗ u‖Ḃ1+|k|−α2,2
≤ C‖u‖Ḃ−α∞,∞

‖u‖Ḃ1+|k|2,2
.

Together with an interpolation inequality applied to ‖vk‖Ḣα we conclude from Young’s inequality that

|(Fk , vk)| ≤ C‖u‖Ḃ−α∞,∞
‖u‖Ḣ1+|k|‖vk‖αḢ1‖vk‖1−α2

≤ C‖u‖Ḃ−α∞,∞
‖∇vk‖1+α2 ‖vk‖1−α2

≤ C‖u‖θḂ−α∞,∞
‖vk‖22 +

1 + α
2 ‖∇vk‖22,

(4.6)
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where θ = 2
1−α , C depends on n, s, α. Inserting (4.6) to the right-hand side of (4.5), summing for |k| =

0, 1, · · · , [s] + 1, and absorbing the terms ‖∇vk‖22 from the right-hand side by the left-hand side, we obtain
that

‖u(t)‖2H[s]+1 ≤ ‖u(ε0)‖2H[s]+1 + C
t∫

ε0

‖u(τ)‖θḂ−α∞,∞
‖u(τ)‖2H[s]+1 dτ,

for all ε0 ≤ t < T. By using Gronwall’s inequality, we get

‖u(t)‖H[s]+1 ≤ ‖u(ε0)‖H[s]+1 exp

C t∫
ε0

‖u(τ)‖θḂ−α∞,∞
dτ

 . (4.7)

Now, applying the logarithmic interpolation inequality (2.6) with s0 = −α, s1 = −n/2 (≤ −1), s2 = s −
n/2 (> −α), β = 1/θ, p = σ = ∞ to f = u(τ), it follows that

‖u(τ)‖Ḃ−α∞,∞
≤ C
(
1 + ‖u(τ)‖U̇−α∞,1/θ,∞

log
1
θ
(
e + ‖u(τ)‖Ḃ−n/2∞,∞∩Ḃs−n/2∞,∞

))
. (4.8)

By the embeddings Ḃ02,∞ ⊂ Ḃ−n/2∞,∞, Ḃs2,∞ ⊂ Ḃs−n/2∞,∞ and Hs ⊂ Bs2,∞ = L2 ∩ Ḃs2,∞ ⊂ Ḃ02,∞ ∩ Ḃs2,∞, we have

‖u(τ)‖Ḃ−n/2∞,∞∩Ḃs−n/2∞,∞
≤ C‖u(τ)‖Ḃ02,∞∩Ḃs2,∞ ≤ C‖u(τ)‖Bs2,∞ ≤ C‖u(τ)‖Hs . (4.9)

Hence, by (4.7), (4.8) and (4.9), it holds that

‖u(t)‖H[s]+1 ≤ ‖u(ε0)‖H[s]+1 exp

C t∫
ε0

(
1 + ‖u(τ)‖θU̇−α∞,1/θ,∞

log(e + ‖u(τ)‖H[s]+1 )
)
dτ

 ,

where C = C(n, s, α). Therefore, with g(t) ≡ log(e + ‖u(t)‖H[s]+1 ), we obtain

g(t) ≤ g(ε0) + C
t∫

ε0

(
1 + ‖u(τ)‖θU̇−α∞,1/θ,∞

g(τ)
)
dτ.

Then Gronwall’s inequality implies that

g(t) ≤ g(ε0) exp

C t∫
ε0

(
1 + ‖u(τ)‖θU̇−α∞,1/θ,∞

)
dτ


for all ε0 ≤ t < T. Thus, we get the estimate (4.3) in the form

sup
ε0≤t<T

‖u(t)‖H[s]+1 ≤
(
e + ‖u(ε0)‖H[s]+1

)exp(CT+C ∫ T
ε0

‖u(τ)‖θU̇−α∞,1/θ,∞
dτ
)
.

(ii) By the same argument as in the above proof, it su�ces to establish the following a priori estimate:

sup
ε0≤t<T

‖u(t)‖H[s]+1 ≤ C

n, s, T, ‖u(ε0)‖H[s]+1 ,
T∫

ε0

‖u(τ)‖2V̇0
∞,∞,2

dτ

 (4.10)

for some ε0 ∈ (0, T).
Applying ∂k with |k| = 0, 1, · · · , [s] + 1 to (N-S), we have

∂tvk − ∆vk + u ·∇vk +∇qk = Gk , (4.11)

where vk := ∂ku, qk := ∂kπ and Gk := −
∑

l≤k,|l|≤|k|−1
(k
l
)
∂k−lu ·∇(∂lu). Testing (4.11) with vk and integrating

the resulting identity on the time interval (ε0, t), we obtain

‖vk(t)‖22 + 2
t∫

ε0

‖∇vk‖22 dτ ≤ ‖vk(ε0)‖22 + 2
t∫

ε0

|(Gk , vk)|dτ, ε0 ≤ t < T . (4.12)
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Now the bilinear estimate (4.2) with p = 2, |α| = |k| − |l|, |β| = |l| + 1, implies that

‖Gk‖2 ≤ C‖u‖BMO‖(−∆)
|k|+1
2 u‖2. (4.13)

From (4.13) and Young’s inequality we conclude that

|(Gk , vk)| ≤ ‖Gk‖2‖vk‖2 ≤ C‖u‖BMO‖(−∆)
|k|+1
2 u‖2‖vk‖2

≤ C‖u‖2BMO‖vk‖22 +
1
2‖∇vk‖

2
2,

(4.14)

with C = C(n, s). Inserting (4.14) to the right-hand side of (4.12) and summing for |k| = 0, 1, · · · , [s] + 1, we
obtain that

‖u(t)‖2H[s]+1 ≤ ‖u(ε0)‖2H[s]+1 + C
t∫

ε0

‖u(τ)‖2BMO‖u(τ)‖2H[s]+1 dτ,

for all ε0 ≤ t < T. By using Gronwall’s inequality and then the continuous embedding Ḃ0∞,2 ⊂ BMO, we get

‖u(t)‖H[s]+1 ≤ ‖u(ε0)‖H[s]+1 exp

C t∫
ε0

‖u(τ)‖2BMO dτ



≤ ‖u(ε0)‖H[s]+1 exp

C t∫
ε0

‖u(τ)‖2Ḃ0∞,2
dτ


(4.15)

Now, by applying the logarithmic interpolation inequality (2.6) with s1 = −n/2 < s0 = 0 < s2 = s − n/2,
β = 1/2, p = ∞ and σ = 2 to f = u(τ), it follows that

‖u(τ)‖Ḃ0∞,2
≤ C
(
1 + ‖u(τ)‖V̇0

∞,∞,2
log

1
2
(
e + ‖u(τ)‖Ḃ−n/2∞,∞∩Ḃs−n/2∞,∞

))
. (4.16)

Here, we note that U̇0
∞,1/2,2 = V̇0

∞,∞,2 holds due to Proposition 2.3 (iii). Hence, combining (4.15), (4.16) and
(4.9), it holds that

‖u(t)‖H[s]+1 ≤ ‖u(ε0)‖H[s]+1 exp

C t∫
ε0

(
1 + ‖u(τ)‖2V̇0

∞,∞,2
log(e + ‖u(τ)‖H[s]+1 )

)
dτ

 ,

where C = C(n, s). Therefore, letting g(t) ≡ log(e + ‖u(t)‖H[s]+1 ), we obtain

g(t) ≤ g(ε0) + C
t∫

ε0

(
1 + ‖u(τ)‖2V̇0

∞,∞,2
g(τ)

)
dτ,

which by Gronwall’s inequality implies that

g(t) ≤ g(ε0) exp

C t∫
ε0

(
1 + ‖u(τ)‖2V̇0

∞,∞,2

)
dτ


for all ε0 ≤ t < T. Thus, we get the estimate

sup
ε0≤t<T

‖u(t)‖H[s]+1 ≤
(
e + ‖u(ε0)‖H[s]+1

)exp(CT+C ∫ T
ε0

‖u(τ)‖2V̇0∞,∞,2
dτ
)
,

which is the desired estimate (4.10).
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