期刊论文详细信息
Advances in Nonlinear Analysis
Iterative methods for monotone nonexpansive mappings in uniformly convex spaces
article
Rahul Shukla1  Andrzej Wiśnicki2 
[1] Department of Mathematics & Applied Mathematics, University of Johannesburg, Kingsway Campus;Department of Mathematics, Pedagogical University of Krakow
关键词: Monotone mapping;    nonexpansive mapping;    fixed point;    ergodic theorem;    Picard iteration;    ordered Banach space;   
DOI  :  10.1515/anona-2020-0170
学科分类:社会科学、人文和艺术(综合)
来源: De Gruyter
PDF
【 摘 要 】

We show the nonlinear ergodic theorem for monotone 1-Lipschitz mappings in uniformly convex spaces: if C is a bounded closed convex subset of an ordered uniformly convex space ( X , ∣·∣, ⪯), T : C  →  C a monotone 1-Lipschitz mapping and x  ⪯  T ( x ), then the sequence of averages 1n∑i=0n−1Ti(x) $ \frac{1}{n}\sum\nolimits_{i=0}^{n-1}T^{i}(x) $ converges weakly to a fixed point of T . As a consequence, it is shown that the sequence of Picard’s iteration { T n ( x )} also converges weakly to a fixed point of T . The results are new even in a Hilbert space. The Krasnosel’skiĭ-Mann and the Halpern iteration schemes are studied as well.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202107200000519ZK.pdf 369KB PDF download
  文献评价指标  
  下载次数:18次 浏览次数:0次