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Abstract: We show the nonlinear ergodic theorem for monotone 1-Lipschitz mappings in uniformly convex
spaces: if C is a bounded closed convex subset of an ordered uniformly convex space (X, ‖ · ‖,�), T : C →
C a monotone 1-Lipschitz mapping and x � T(x), then the sequence of averages 1

n
∑n−1

i=0 T
i(x) converges

weakly to a �xed point of T . As a consequence, it is shown that the sequence of Picard’s iteration {Tn(x)}
also converges weakly to a �xed point of T. The results are new even in a Hilbert space. The Krasnosel’skĭı-
Mann and the Halpern iteration schemes are studied as well.

Keywords: Monotone mapping; nonexpansive mapping; �xed point; ergodic theorem; Picard iteration; or-
dered Banach space
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1 Introduction
Let C be abounded closed convex subset of aBanach space X. Amapping T : C → X is said to benonexpansive
if for each pair of elements x, y ∈ C, we have∥∥T(x) − T(y)∥∥ ≤ ‖x − y‖ .
A mappping T is accretive if for each x, y ∈ C and λ ≥ 0,

‖x − y‖ ≤
∥∥x − y + λ(T(x) − T(y))∥∥ .

The study of �xed points of nonexpansive mappings and null points of accretive mappings extends the
classical theory of successive approximations for strict contractions based on the Banach contraction prin-
ciple. It is well-known that if T : C → C is a strict contraction, the Picard sequence xn+1 = T(xn) converges
strongly to the unique �xed point of T . In the case of nonexpansive mappings, the Picard sequence need not
converge nor need the �xed point be unique if it exists. However, if the space X is su�ciently smooth (for
example, a Hilbert space), for any α ∈ (0, 1) and x1 ∈ C the iterative scheme de�ned by

xn+1 = (1 − α)xn + α T(xn)

converges weakly to a �xed point of a nonexpansive mapping T : C → C. This, and a more general scheme,
xn+1 = (1− αn)xn + αnT(xn) is now called the Krasnosel’skĭı–Mann (or Mann) formula for �nding �xed points
of nonexpansive mappings.
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Another iterative algorithm for nonexpansivemappings was proposed by B. Halpern [1]: select u ∈ C and
de�ne

xn+1 = (1 − αn)u + αnT(xn).

It turns out that if the space X is su�ciently smooth and parameters {αn} are appropriately chosen, the above
sequence converges strongly to a �xedpoint of Twhich is the projection of the initial u to the set of �xedpoints
of T .

The third kind of the approximation procedure that, in a sense, generalizes the Krasnosel’skĭı-Mann
method comes from the ergodic theory: the sequence of averages

xn =
1
n
∑n−1

i=0
T i(x)

converges weakly to a �xed point of T. This is the nonlinear ergodic theorem, proved in a Hilbert space by J.B.
Baillon [2].

A wide variety of well-known algorithms applied in practical and theoretical problems are based on the
above iterative schemes and their perturbative modi�cations. These include the proximal point algorithm,
the generalized Yosida approximation of the maximal monotone operator, the algorithms for solving split
feasibility problems used frequently in signal processing and image reconstruction, and many others as de-
scribed, for example, in [3–7].

The objective of this paper is to develop similar methods for mappings T : C → C that are monotone
nonexpansive, that is, ∥∥T(x) − T(y)∥∥ ≤ ‖x − y‖ and T(x) � T(y)

for x, y ∈ C such that x � y. Here� is a partial order on C that corresponds somehow to the norm of X. Very
often, such ordering is given by a cone in X with certain properties. In this paper, following the recent works
of M.A. Khamsi and his collaborators, we take amore general view and consider partial orders on X such that
the order intervals are closed and, moreover, the partial order is compatible with the linear structure of X
(for details, see Section 2). It turns out that many results in the theory of nonexpansivemappings are valid for
monotonenonexpansivemappings too, despite the fact that those neednot evenbe continuous. The interplay
between the order andmetrical structure of the space is very fruitful as observed, for example, by A. Ran and
M. Reurings who applied a generalization of the Banach contraction principle to matrix equations (see [8]).

The existential part of the theory of monotone nonexpansive mappings was recently studied in [9] (see
also [10–12]). It is shown there that if X is a topological space with a partial order for which order intervals
are compact, then every directed subset of X has a supremum. It allows one to apply methods based on the
Knaster–Tarski (Abian–Brown) theorem.

In this paper we concentrate on the iterative procedures for �nding �xed points. One of the long-standing
problems in the theory of nonexpansive iterations is whether the Krasnosel’skĭı-Mann and the Halpernmeth-
ods, as well as the nonlinear ergodic theorem, hold true in all uniformly convex Banach spaces. The usual
requirements here are somekind of smoothness like the Fréchet or Gateauxdi�erentiable norm, or possessing
a weakly continuous duality map (see, eg., [13–17]).

We prove that in the case of monotone nonexpansive mappings, uniform convexity is su�cient to obtain
weak convergence of the above algorithms to a �xed point of T. The paper is organized as follows. In Section 2
we show the demiclosedness principle for monotone nonexpansive mappings which is one of the main tools
in our analysis. Sections 3 and 4 are devoted, respectively, to Krasnosel’skĭı-Mann’s and Halpern’s iterations.
Ourmain result–the nonlinear ergodic theorem–is proved in Section 5: if C is a bounded closed convex subset
of anordereduniformly convex space (X, ‖·‖,�), T : C → C amonotonenonexpansivemappingand x � T(x),
then the sequence of averages 1

n
∑n−1

i=0 T
i(x) converges weakly to a �xed point of T . As a consequence, we

show that the Picard iteration {Tn(x)} also converges weakly to a �xed point of T. Our results, except the
Krasnosel’skĭı-Mann iteration (see [11, Theorem 3.3]), appear to be new even in a Hilbert space.
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2 Demiclosedness principle in uniformly convex spaces
Let X be a Banach space with a partial order� compatible with the linear structure of X, that is,

x � y implies x + z � y + z,
x � y implies λx � λy

for every x, y, z ∈ X and λ ≥ 0. It follows that all order intervals [x, →] = {z ∈ X : x � z} and [←, y] = {z ∈ X :
z � y} are convex. Moreover, we will assume that each [x, →] and [←, y] is closed. We will say that (X, ‖ ·‖,�)
is an ordered Banach space.

A sequence {xn} is said to be an approximate �xed point sequence (a.f.p.s. for short) for a mapping T if∥∥T(xn) − xn∥∥ → 0 as n → ∞, see [18]. A sequence {xn} is monotone if x1 � x2 � x3 � · · · .
The following lemma can be proved in much the same way as is the case of nonexpansive mappings (see,
e.g., [19, Prop. 10.1]).

Lemma 1. Suppose C is a bounded convex subset of an ordered uniformly convex Banach space (X, ‖ · ‖,�)
and T : C → X is monotone nonexpansive. If {un} and {vn} are approximate �xed point sequences such that
un � vn for each n ∈ N, then {wn} = {12 (un + vn)} is an approximate �xed point sequence too.

Proof. Suppose the assertion of the lemma is false. Then there exist sequences {un}, {vn} satisfying lim
n→∞
‖un−

T(un)‖ = 0, lim
n→∞
‖vn − T(vn)‖ = 0, un � vn , such that ‖wn − T(wn)‖ ≥ ε for some ε > 0 and every n ∈ N. Since

wn = un+vn
2 , by convexity of the order interval [un , vn], we have un � wn � vn for each n ∈ N. We can assume

by passing to a subsequence that
lim
n→∞
‖un − vn‖ = 2r > 0.

It follows that
lim
n→∞
‖un − wn‖ = lim

n→∞
‖vn − wn‖ = r.

Choose s > 0 such that s < ε
r . Hence, for su�ciently large n,

s < ε
‖un − T(un)‖ + ‖un − wn‖

and
s < ε
‖vn − T(vn)‖ + ‖vn − wn‖

.

By the triangle inequality and monotone nonexpansivity of T, we get

‖un − T(wn)‖ ≤ ‖un − T(un)‖ + ‖T(un) − T(wn)‖
≤ ‖un − T(un)‖ + ‖un − wn‖.

Similarly,
‖vn − T(wn)‖ ≤ ‖vn − T(vn)‖ + ‖vn − wn‖.

By the uniform convexity of X, we have∥∥∥∥un − 1
2(wn + T(wn))

∥∥∥∥ ≤
(
1 − δ

(
ε

‖un − T(un)‖ + ‖un − wn‖

))
(‖un − T(un)‖ + ‖un − wn‖)

≤ (1 − δ(s))(‖un − T(un)‖ + ‖un − wn‖). (2.1)

Similarly, ∥∥∥∥vn − 1
2(wn + T(wn))

∥∥∥∥ ≤
(
1 − δ

(
ε

‖vn − T(vn)‖ + ‖vn − wn‖

))
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(‖vn − T(vn)‖ + ‖vn − wn‖)
≤ (1 − δ(s))(‖vn − T(vn)‖ + ‖vn − wn‖). (2.2)

By the triangle inequality, (2.1) and (2.2), we obtain

‖un − vn‖ ≤
∥∥∥∥un − 1

2(wn + T(wn))
∥∥∥∥ + ∥∥∥∥vn − 1

2(wn + T(wn))
∥∥∥∥

≤ (1 − δ(s)){(‖un − T(un)‖ + ‖un − wn‖) + (‖vn − T(vn)‖ + ‖vn − wn‖)}.

Letting n → ∞, we get 2r ≤ 2r(1 − δ(s)), a contradiction and this completes the proof.

In what follows we will use the following observation (see [20, Lemma 3.1]). Suppose that {xn} is a monotone
sequence that has a cluster point, i.e., there exists a subsequence {xnj} that converges to g (with respect to
the strong or weak topology). Since the order intervals are (weakly) closed, we have g ∈ [xn , →) for each n,
i.e., g is an upper bound for {xn}. If g1 is another upper bound for {xn}, then xn ∈ (←, g1] for each n, and
hence g � g1. It follows that {xn} converges to g = sup{xn}.

The following result is a basic tool in our consideration.

Theorem 1. Suppose C is a weakly compact convex subset of an ordered uniformly convex Banach space (X, ‖ ·
‖,�) and {xn} is a monotone a.f.p.s. for a monotone nonexpansive T : C → X. Then {xn} converges weakly to a
�xed point of T.

Proof. Notice that on account of the above observation, {xn} converges weakly to a point x in C. De�ne

r = inf
{
lim inf
n→∞

‖un‖ : {un} is a monotone a.f.p.s. for T in C that converges weakly to x
}
.

Since C is bounded, r < ∞. If r = 0, then x = 0 and T(x) = x. Thus, we suppose r > 0. From the de�nition of
r, it is clear that there exists a monotone approximate �xed point sequence {vn} for T converging weakly to
x such that ‖vn‖ ≤ r + 1

n for each n. If {vn} converges to x in norm, then T(x) = x. Therefore, we may assume
that there exists ε > 0 and a subsequence {vnj} of {vn} such that ‖vnj − vnj+1‖ ≥ ε for each j = 1, 2, . . . . Let

wnj =
1
2(vnj + vnj+1 ).

Let s be a real number such that s < ε
r , then s < ε

‖vnj‖
for su�ciently large j. By the de�nition of uniform

convexity of X, for su�ciently large j, we have

‖wnj‖ ≤
(
r + 1

nj

)
(1 − δ(s)).

Then
lim sup
n→∞

‖wnj‖ ≤ r(1 − δ(s)) < r.

It is not di�cult to see that {wnj} ismonotone and convergesweakly to x. By Lemma 1, {wnj} is an approximate
�xed point sequence that contradicts the de�nition of r.

3 Krasnosel’skĭı-Mann iteration
Let C be a convex subset of a Banach space X and T : C → C a monotone nonexpansive mapping. The
following iteration process is known as the Krasnosel’skĭı-Mann iteration process (see [21, 22]):{

x1 ∈ C
xn+1 = αnxn + (1 − αn)T(xn)

(3.1)

where {αn} is a sequence in [a, b] with a, b ∈ (0, 1).
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Lemma 2. [20]. Let C be a bounded closed convex subset of an ordered uniformly convex space (X, ‖ ·‖,�) and
T : C → C amonotone nonexpansive mapping. Suppose that {xn} is a sequence de�ned by (3.1) and x1 � T(x1).
Then lim

n→∞
‖xn − T(xn)‖ = 0.

Theorem 2. Let C be a nonempty bounded closed convex subset of an ordered uniformly convex space (X, ‖ ·
‖,�) and T : C → C amonotone nonexpansivemapping. Let {xn} be a sequence de�ned by (3.1) and x1 � T(x1).
Then {xn} converges weakly to a �xed point of T. If, moreover, the range of C under T is contained in a compact
subset of X, then {xn} converges strongly to a �xed point of T.

Proof. It is not di�cult to see that the sequence {xn} is monotone. It follows from Lemma 2 that lim
n→∞
‖xn −

T(xn)‖ = 0 and thus Theorem 1 yields that {xn} converges weakly to a �xed point of T . If the range of C under
T is contained in a compact set then there exists a strongly convergent subsequence {T(xnj )} of {T(xn)} and
it follows from the observation made before Theorem 1, {T(xn)} is strongly convergent. Thus {xn} is also
strongly convergent.

The above theorem should be compared with Theorem 2 in [23], which asserts the same conclusion in a uni-
formly convex space with a Fréchet di�erentiable norm without the assumption about monotonicity of the
mapping T (it is required that

∞∑
n=1

αn(1 − αn) = ∞ there). In the case of monotone nonexpansive mappings we

can drop the assumption about the Fréchet di�erentiability of the norm, thus uniform convexity is su�cient
to obtain the weak convergence of Krasnosel’skĭı-Mann iteration (3) in this case.

Theorem 2 complements [11, Theorem 3.3], where a similar result was proved in ordered Banach spaces
with the Opial property (see also [24–26] for some generalizations).

4 Halpern iteration
Let C be a convex subset of a Banach space X and T : C → C a nonexpansivemapping. The following iteration
process is known as the Halpern iteration process [1]:{

u, x1 ∈ C
xn+1 = αnu + (1 − αn)T(xn)

(4.1)

where {αn} is a sequence in (0, 1). The �rst result extending Halpern’s insights outside Hilbert space is Corol-
lary 2 of the early paper by S. Reich [27]. A further extensionwas givenbyH.-K. Xu [7, Theorem3.1],whoproved
that if C is a bounded closed convex subset of a uniformly smooth Banach space then the sequence de�ned
by Halpern’s iteration (4.1) converges strongly to a �xed point of T provided

lim
n→∞

αn = 0,
∑∞

n=1
αn = ∞, lim

n→∞

αn − αn−1
αn

= 0. (4.2)

Using the tools of Section 2 we can prove a counterpart of Xu’s result concerning weak convergence of
Halpern’s iterations for monotone nonexpansive mappings in ordered uniformly convex spaces.

Lemma 3. Let C be a nonempty convex subset of an ordered uniformly convex space (X, ‖ ·‖,�) and T : C → C
a monotone mapping. Let {xn} be a sequence de�ned by Halpern iteration (4.1) such that x1 � u � T(x1). If
the sequence {αn} is decreasing, then

u � T(xn+1) and xn � xn+1 for all n ∈ N. (4.3)

Proof. We shall use induction to prove our conclusion. By assumption, x1 � u � T(x1). Since a partial order
is compatible with the linear structure of X, we have

x2 = α1u + (1 − α1)T(x1) � α1x1 + (1 − α1)x1 = x1.
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Since T is monotone, we have u � T(x1) � T(x2). Thus (4.3) is true for n = 1. Now suppose it is true for any
k ∈ N, that is, u � T(xk+1) and xk � xk+1. It follows that T(xk) � T(xk+1). By assumption, {αn} is decreasing
and hence

xk+2 = αk+1u + (1 − αk+1)T(xk+1)
= αk+1u + (αk − αk+1)T(xk+1) + (1 − αk)T(xk+1)
� αk+1u + (αk − αk+1)u + (1 − αk)T(xk) = xk+1.

Since T is monotone, u � T(xk+1) � T(xk+2). Therefore, (4.3) is true for all n ∈ N.

Theorem 3. Let C be a bounded closed convex subset of an ordered uniformly convex space (X, ‖ ·‖,�) and T :
C → C a monotone nonexpansive mapping. Let {xn} be a sequence de�ned by Halpern iteration (4.1) satisfying
conditions (4.2) such that x1 � u � T(x1). If the sequence {αn} is decreasing then {xn} converges weakly to a
�xed point of T .

Proof. We show that
∥∥T(xn) − xn∥∥ → 0 as n → ∞. From (4.1) and (4.2), we get

lim
n→∞
‖xn+1 − T(xn)‖ = lim

n→∞
αn‖u − T(xn)‖ = 0. (4.4)

It follows from Lemma 3 that the sequence {xn} is monotone and hence

‖xn+1 − xn‖ =
∥∥(αn − αn−1)(u − T(xn−1) + (1 − αn)(T(xn) − T(xn−1)∥∥

≤ (1 − αn) ‖xn − xn−1‖ + αn
αn−1 − αn

αn
diam C.

By assumption, lim
n→∞

αn = 0 and lim
n→∞

αn−αn−1
αn = 0, and it follows from [7, Lemma 2.5] that ‖xn+1 − xn‖ → 0 as

n → ∞. Thus ∥∥T(xn) − xn∥∥ ≤ ∥∥T(xn) − xn+1∥∥ + ‖xn+1 − xn‖ → 0 as n → ∞.

Theorem 1 now shows that {xn} converges weakly to a �xed point of T .

Notice that our result covers a natural iteration scheme{
x1 ∈ C, x1 � T(x1),
xn+1 = 1

n x1 + (1 −
1
n )T(xn).

5 Nonlinear ergodic theory
A standard way to regularize a nonconvergent sequence {yn} is to consider its averages xn = 1

n
∑n

i=1 yi . Bail-
lon showed in [2] that if T is a nonexpansive mapping acting on a nonempty bounded closed convex subset
of a Hilbert space then the sequence of averages

xn =
1
n
∑n−1

i=0
T i(x)

converges weakly to a �xed point of T, see also [28–30]. This result, known as the nonlinear ergodic theo-
rem,was generalized to Lp spaces by Baillon [31] and to uniformly convex spaceswith a Fréchet di�erentiable
norm by R.E. Bruck [32] and Reich [23, 33]. A long-standing problem is to drop the assumption about a Fréchet
di�erentiability of the norm. In this section we are able to do it in the case of monotone nonexpansive map-
pings.

We will need the following variant of Lemma 1 (see also [34, Lemma 3.17]).

Lemma 4. Suppose C is a bounded convex subset of an ordered uniformly convex space (X, ‖ · ‖,�) and
T : C → X is monotone nonexpansive. If {un}, {vn} are sequences such that lim

n→∞
sup
m≥1
‖un+m − Tm(un)‖ = 0,
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lim
n→∞

sup
m≥1
‖vn+m −Tm(vn)‖ = 0 and un � vn for each n ∈ N, then {wn} = {αun +βvn}, where α, β ∈ (0, 1), α+β =

1, satis�es the condition lim
n→∞

sup
m≥1
‖wn+m − Tm(wn)‖ = 0, too.

Proof. Since un � vn for each n ∈ N and by convexity of the order interval [un , vn], we have un � αun +βvn �
vn . For a �xed m ∈ N and for each n ∈ N, take

xn =
Tm(vn) − Tm(αun + βvn)

α‖un − vn‖

and
yn =

Tm(αun + βvn) − Tm(un)
β‖un − vn‖

.

Since T is a monotone nonexpansive mapping, ‖xn‖, ‖yn‖ ≤ 1 for all n ∈ N. By the de�nition of the modulus
of convexity, we have

2αβδ(‖x − y‖) ≤ 2min{α, β}δ(‖x − y‖) ≤ 1 − ‖αx + βy‖

for every x, y ∈ C with ‖x‖, ‖y‖ ≤ 1. Therefore,

2αβδ
(
‖αTm(un) + βTm(vn) − Tm(αun + βvn)‖

αβ‖un − vn‖

)
≤ 1 − ‖T

m(un) − Tm(vn)‖
‖un − vn‖

.

This implies

2αβ‖un − vn‖δ
(
‖αTm(un) + βTm(vn) − Tm(αun + βvn)‖

αβ‖un − vn‖

)
≤ ‖un − vn‖ − ‖Tm(un) − Tm(vn)‖.

Let Θ = diam C, noting that αβ‖un − vn‖ ≤ Θ
4 and δ(s)

s is nondecreasing [34, Proposition A.4.], from the above
inequality, we get

Θ
2 δ
(
4
Θ ‖αT

m(un) + βTm(vn) − Tm(αun + βvn)‖
)
≤ ‖un − vn‖

−‖Tm(un) − Tm(vn)‖. (5.1)

Choose a sequence of nonnegative numbers {εn} such that εn → 0and ‖un+m−Tm(un)‖, ‖vn+m−Tm(vn)‖ ≤ εn
for every n,m ∈ N. Thus, for each n and m, we have

‖un+m − vn+m‖ ≤ ‖un+m − Tm(un)‖ + ‖vn+m − Tm(vn)‖ + ‖Tm(vn) − Tm(un)‖
≤ 2εn + ‖un − vn‖.

Thus, lim
n→∞
‖un − vn‖ exists. Now, using (5.1), we obtain

‖wn+m − Tm(wn)‖ ≤ α‖un+m − Tm(un)‖ + β‖vn+m − Tm(vn)‖ + ‖αTm(un) + βTm(vn) − Tm(wn)‖

≤ εn +
Θ
4 δ

−1
(
2
Θ (‖un − vn‖ − ‖T

m(un) − Tm(vn)‖)
)

≤ εn +
Θ
4 δ

−1
(
2
Θ (‖un − vn‖ − ‖un+m − vn+m‖ + 2εn)

)
.

Therefore, ‖wn+m − Tm(wn)‖ → 0 as n → ∞ because lim
n→∞
‖un − vn‖ exists.

We are now in a position to prove the nonlinear ergodic theorem for monotone nonexpansive mappings in
any ordered uniformly convex Banach space.

Theorem 4. Let C be a bounded closed convex subset of an ordered uniformly convex space (X, ‖ · ‖,�) and
T : C → C amonotone nonexpansive mapping. If x � T(x) then the sequence

{
1
n
∑n−1

i=0 T
i(x)
}
converges weakly

to a �xed point of T .
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Proof. For any integer p ≥ 1, let
w(p)
n = 1

p
∑p−1

i=0
T i+n(x).

Since a partial order is compatible with the linear structure of X, it is not di�cult to see that

w(p)
1 � w

(p)
2 � w

(p)
3 � .... (5.2)

for each p ≥ 1. Moreover,

w(p)
n = 1

p
∑p−1

i=0
T i+n(x) = 1

p + 1
∑p−1

i=0
T i+n(x) +

(
1
p −

1
p + 1

)∑p−1

i=0
T i+n(x)

� 1
p + 1

∑p−1

i=0
T i+n(x) + 1

p(p + 1)
∑p−1

i=0
Tp+n(x) = 1

p + 1
∑p

i=0
T i+n(x) = w(p+1)

n (5.3)

and

w(p+1)
n =

(
1
p −

1
p + 1

)
pTn(x) + 1

p + 1
∑p

i=1
T i+n(x)

�
(
1
p −

1
p + 1

)
(T1+n(x) + ... + Tp+n(x)) + 1

p + 1
∑p

i=1
T i+n(x)

= 1
p
∑p−1

i=0
T i+1+n(x) = w(p)

n+1 (5.4)

for every integer n ≥ 0, p ≥ 1. Hence the sequences {w(p)
n }n converge weakly to some w ∈ C if n → ∞ for

any integer p ≥ 1. Fix a functional f ∈ X* and notice that f (Tn(x) − w) → 0 if n → ∞ since {Tn(x)} = {w(1)
n }

converges weakly to w. Hence

f
(
1
p
∑p−1

i=0
T i(x) − w

)
= 1
p
∑p−1

i=0
f (T i(x) − w) → 0

if p → ∞ for every f ∈ X*, that is, {w(p)
0 } =

{
1
p
∑p−1

i=0 T
i(x)
}
converges weakly to w.

We show that w is a �xed point of T . Since lim
n→∞

sup
m≥1
‖T i+n+m(x) − Tm(T i+n(x))‖ = 0 for each i, it follows by

induction fromLemma4 that lim
n→∞

sup
m≥1
‖w(p)

n+m−Tm(w(p)
n )‖ = 0 for every p. Therefore,we can choose a sequence

M1 < M2 < ... such that ‖w(p)
n+1 − T(w

(p)
n )‖ < 1

p for every n ≥ Mp . Furthermore ‖w(p)
n+1 − w

(p)
n ‖ ≤ 2

p for every n, p.
Hence

‖T(w(p)
n ) − w(p)

n ‖ < 3
p

for every p and n ≥ Mp . In particular, {w(p)
Mp
}p is an approximate �xed point sequence for T. It follows from

(5.2) and (5.4) that
w(p)
0 � w

(p)
Mp
� w(1)

Mp+p .

Since both {w(p)
0 }p and {w(1)

Mp+p}p converge weakly to w, {w(p)
Mp
}p converges weakly to w, too. Moreover,

{w(p)
Mp
}p is monotone and thus Theorem 1 yields T(w) = w, which proves the theorem.

Notice that the monotonicity of the mapping T forces the Picard iteration to converge weakly to a point.
Therefore, quite surprisingly, the proof above givesmore, namely the Picard sequence {Tn(x)} also converges
weakly to a �xed point of T.

Theorem 5. Let C be a bounded closed convex subset of an ordered uniformly convex space (X, ‖ · ‖,�) and
T : C → C a monotone nonexpansive mapping. If x � T(x) then the sequence of Picard iteration {Tn(x)}
converges weakly to a �xed point of T .

Proof. In the notation of Theorem 4, the sequences {w(p)
n }n , p ≥ 1, and {w(p)

n }p , n ≥ 0, converge weakly to w
that is a �xed point of T. In particular, {w(1)

n } = {Tn(x)}.
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Open Problem

Finally, we raise the following question: is there a direct proof of Theorem 5?

Acknowledgments:Weare verymuch thankful to the reviewer for a very thorough reading andmany helpful
corrections and suggestions, which have been incorporated into this version of the paper.
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