期刊论文详细信息
Advances in Nonlinear Analysis | |
Fixed point of some Markov operator of Frobenius-Perron type generated by a random family of point-transformations in ℝ d | |
article | |
Peter Bugiel1  Stanisław Wędrychowicz2  Beata Rzepka2  | |
[1] Faculty of Mathematics and Computer Science, Jagiellonian University Cracow (Kraków);Department of Nonlinear Analysis, Ignacy Łukasiewicz Rzeszów University of Technology | |
关键词: Markov operator; Markov maps; fixed point; Radon-Nikodym derivative; Frobenius-Perron operator; | |
DOI : 10.1515/anona-2020-0163 | |
学科分类:社会科学、人文和艺术(综合) | |
来源: De Gruyter | |
【 摘 要 】
Existence of fixed point of a Frobenius-Perron type operator P : L 1 ⟶ L 1 generated by a family { φ y } y ∈ Y of nonsingular Markov maps defined on a σ -finite measure space ( I , Σ , m ) is studied. Two fairly general conditions are established and it is proved that they imply for any g ∈ G = { f ∈ L 1 : f ≥ 0, and ∥ f ∥ = 1}, the convergence (in the norm of L 1 ) of the sequence {Pjg}j=1∞ $\begin{array}{} \{P^{j}g\}_{j = 1}^{\infty} \end{array} $ to a unique fixed point g 0 . The general result is applied to a family of C 1+ α -smooth Markov maps in ℝ d .
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202107200000515ZK.pdf | 406KB | download |