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Abstract: Existence of �xed point of a Frobenius-Perron type operator P : L1 −→ L1 generated by a family
{φy}y∈Y of nonsingular Markov maps de�ned on a σ-�nite measure space (I, Σ, m) is studied. Two fairly
general conditions are established and it is proved that they imply for any g ∈ G = {f ∈ L1 : f ≥ 0, and ‖f‖ =
1}, the convergence (in the norm of L1) of the sequence {Pjg}∞j=1 to a unique �xed point g0. The general result
is applied to a family of C1+α-smooth Markov maps in Rd.
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1 Introduction
Let be given a randomly perturbed semi-dynamical system that evolves according to the rule:

xj = φξj (xj−1) for j = 1, 2, ...,

where {φy}y∈Y is a family of nonsingular Markov maps de�ned on a subset I ⊆ Rd (bounded or not), d ≥ 1,
and {ξj}∞j=1 is a sequence of identically distributed independent Y-valued random elements, where Y is a
Polish metric space (i.e., a complete separable metric space).

Investigation of the asymptotic properties of such a semi-dynamical system leads to the study of the
convergence of the sequence {Pj}∞j=1 of iterates of some Frobenius-Perron type operator P which is Markov
operator, i.e. ‖Pf‖ = ‖f‖, and Pf ≥ 0 if f ≥ 0, acting in L1 (Markovoperator of F-P type, in short).Moreprecisely,
let g ≥ 0, ‖g‖ = 1, if Prob(x0 ∈ B)

df=
∫
B g dm (m denotes the Lebesgue measure on I), then Prob(xj ∈ B) =∫

B P
jg dm, where P is the Markov operator of F-P type de�ned by (3.1) (see Proposition 3.1).
We establish two fairly general conditions: conditions (3.H1) and (3.H2), and prove that under

those conditions the system in question evolves to a stationary distribution. That is, the sequence
{Pj}∞j=1 converges (in the norm of L1) to a unique �xed point g0 ∈ G (Th. 3.3). The two con-
ditions are probabilistic analogues of conditions (3.H1) and (3.H2) in [1], respectively. Actually, if
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φy = φ, y ∈ Y, that is if xj = φξj (xj−1) = φ(xj−1) is a deterministic semi-dynamical system
(φ is a �xed Markov map), then we get two mentioned conditions given in [1].

As an application of this general result we show that the randomly perturbed semi-dynamical system
generated by a family of C1+α-smooth Markov maps in Rd evolves to a unique stationary density (Th. 4.2).

Similar problems were considered by several authors: eg. [2–4], and the references therein.

2 Preliminaries
Let (I, Σ,m) be a σ-�nite atomless (non-negative) measure space. Quite often the notions or relations occur-
ring in this paper (in particular, the considered transformations) are de�ned or hold only up to the sets of
m-measure zero. Henceforth we do not mention this explicitly.

The restriction of a mapping τ : X → Y to a subset A ⊆ X is denoted by τ|A and the indicator function of
a set A by 1A.

Let τ : I → I be a measurable transformation i.e., τ−1(A) ∈ Σ for each A ∈ Σ. It is called nonsingular i�
m ◦ τ−1 ∼ m i.e., for each A ∈ Σ, m(τ−1(A)) = 0⇔ m(A) = 0.

We give a few de�nitions. The following kind of transformations is considered in this paper:

De�nition 2.1. A nonsingular transformation φ from I into itself is said to be a piecewise invertible i�
(2.M1) one can �nd a �nite or countable partition π = {Ik : k ∈ K} of I, which consists of measurable subsets

(of I) such that m(Ik) > 0 for each k ∈ K, and sup{m(Ik) : k ∈ K} < ∞, here and in what follows K is an
arbitrary countable index set;

(2.M2) for each Ik ∈ π, the mapping φk = φ|Ik is one-to-one of Ik onto Jk = φk(Ik) and its inverse φ−1k is
measurable.

De�nition 2.2. A piecewise invertible transformation φ is said to be a Markov map i� its corresponding
partition π satis�es the following two conditions:
(2.M3) π is a Markov partition i.e., for each k ∈ K,

φ(Ik) =
⋃
{Ij : m(φ(Ik) ∩ Ij) > 0};

(2.M4) φ is indecomposable (irreducible) with respect to π i.e., for each (j, k) ∈ K2 there exists an integer
n > 0 such that Ik ⊆ φn(Ij).

Inwhat followswedenote by ‖ · ‖ thenorm in L1 = L1(I, Σ,m) andbyG = G(m) the set of all (probabilistic)
densities i.e.,

G df= {g ∈ L1 : g ≥ 0, and ‖g‖ = 1}.

Let τ : I → I be a nonsingular transformation. Then the formula

Pτ f df= d
dm (mf ◦ τ−1) for f ∈ L1, (2.1)

where dmf = f dm, and d
dm denotes the Radon-Nikodym derivative, de�nes a linear operator from L1 into

itself. It is called the Frobenius-Perron operator (F-P operator, in short) associated with τ [5, 6].
Formula (2.1) is equivalent to the following one:∫

A

Pτ f dm = mf (τ−1(A)) =
∫

τ−1(A)

f dm.

From the de�nition of Pτ it follows that it is a Markov operator, i.e., Pτ is a linear operator and for any
f ∈ L1(m) with f ≥ 0, Pτ f ≥ 0 and ‖Pτ f‖ = ‖f‖.

The last equality follows immediately from the second formula equivalent to (2.1) if one puts A = I. Fur-
ther, PτG ⊆ G, and Pτ is a contraction, i.e. ‖Pτ‖ ≤ 1.
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Let τ1, ..., τj , (j ≥ 2), be some nonsingular transformations. Denote by P(j,...,1), P(j,...,i+1) and P(i,...,1),
1 ≤ i < j, the F-P operators associated with the transformations τ(j,...,1) = τj ◦ · · · ◦ τ1, τ(j,...,i+1) = τj ◦ · · · ◦ τi+1
and τ(i,...,1) = τi ◦ · · · ◦ τ1, respectively. Then

P(j,...,1) = P(j,...,i+1)P(i,...,1), (2.2)

in particular P(j,...,1) = Pj ...P1.

De�nition 2.3. In what follows we consider a family {φy}y∈Y of Markov maps such that:
(2.My5) Y is a Polish metric space and the map I × Y 3 (x, y)→ φy(x) ∈ I is Σ(I × Y)/Σ(I)-measurable;
(2.My6) there exists a partition π of I such that πy = π for each y ∈ Y , where πy is a Markov partition

associated with φy.

For j ≥ 1, and y1, ..., yj ∈ Y , we denote y(j) = (yj , ..., y1) and then we set

φy(j)
df= φyj ◦ · · · ◦ φy1 . (2.3)

Clearly, φy(j) : I → I is a Markov map. Its Markov partition is given by

πy(j)
df= π ∨ φ−1y(1)(π) ∨ φ

−1
y(2)(π) ∨ · · · ∨ φ

−1
y(j−1)(π) provided j ≥ 2.

It consists of the sets of the form:

Iy(j−1)k(j)
df= Ik0 ∩ φ

−1
y(1)(Ik1 ) ∩ φ

−1
y(2)(Ik2 ) ∩ · · · ∩ φ

−1
y(j−1)(Ikj−1 ), (2.4)

where k(j) = (k0, k1, ..., kj−1) ∈ K j.
Let

φy(j)k(j)
df= (φy(j))|Iy(j−1)k(j)

,

then by condition (2.M2), φy(j)k(j) is one-to-one mapping of Iy(j−1)k(j) onto

Jy(j)k(j)
df= φy(j)k(j)(I

y(j−1)
k(j) ) = φyj (Ikj−1 ).

It is nonsingular, and φ−1y(j)k(j), the mapping inverse to φy(j)k(j), is
measurable.

By Def. 2.3, πy(1) = πy1 = π and therefore Iy(0)k(1) = Ik0 ; consequently φy(1)k(1) = (φy1 )|Ik0 = φy1k0 and,
according to (2.M2), φyk is one-to-one mapping of Ik onto J

y
k = φyk(Ik).

We have to adjust the indecomposable condition (2.M4) to the new case when a single Markov map φ is
replaced by a family {φy}y∈Y of Markov maps. We propose the following condition (see note at the end of
Rem. 2.4):

(2.My4) for each (j, k) ∈ K2 there exist an integer s > 0, and a subset Ỹ s ⊆ Y s with ps(Ỹ s) > 0 such that
Ik ⊆ φy(s)(Ij) for all y(s) ∈ Ỹ s. Here p is a probability measure on Σ(Y), and ps = p × · · · × p︸ ︷︷ ︸

s−times

.

From the properties of φy(r) it follows that the formula

my(r)k(r)(A)
df= m ◦ φ−1y(r)k(r)(A) = m(φ

−1
y(r)k(r)(A)) for A ∈ Σ, (2.5)

de�nes an absolutely continuousmeasurewhich is concentrated on Jy(r)k(r) (i.e.,my(r)k(r)(A) = my(r)k(r)(A∩ J
y(r)
k(r))),

and whose Radon-Nikodym derivative satis�es d my(r)k(r)
dm > 0 a.e. on Jy(r)k(r).

To see the latter property of the measure my(r)k(r), note �rst that if d my(r)k(r)
dm = 0 on A ⊆ Jy(r)k(r), then

φ−1y(r)k(r)(A) ⊆ I \ I
y(r−1)
k(r) a.e., because

m(φ−1y(r)k(r)(A) ∩ I
y(r−1)
k(r) ) =

∫
A∩Jy(r)k(r)

d my(r)k(r)
dm dm = 0. Therefore, A = ∅ a.e.
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We put (r = 1, 2, ...)

σy(r)k(r)
df=


d my(r)k(r)
dm , on Jy(r)k(r),

0, on I \ Jy(r)k(r),
(2.6)

next,

f y(r)k(r)
df=

f ◦ φ−1y(r)k(r), on Jy(r)k(r),
0, on I \ Jy(r)k(r) .

(2.7)

and �nally
Py(r)f

df= d
dm (mf ◦ φ−1y(r)), where dmf = fdm.

Then the F-P operator Py(r) of the Markov map φy(r)k(r) can be written in the following form

Py(r)f =
∑
k(r)

f y(r)k(r)σy(r)k(r). (2.8)

Indeed, from Def. 2.3, (2.3) and (2.5) it follows that for any f ∈ L1, f ≥ 0, the following equalities hold:∫
A

Py(r)f dm =
∫
A

d
dm (mf ◦ φ−1y(r)) dm = mf (φ−1y(r)(A)) =

∑
k(r)

∫
Ay(r)k(r)

f dm

=
∑
k(r)

∫
A

f ◦ φ−1y(r)k(r) dmy(r)k(r) =
∫
A

∑
k(r)

f y(r)k(r)σy(r)k(r)

dm,
where Ay(r)k(r) = φ−1y(r)k(r)(A), and dmy(r)k(r) is given by (2.5). Hence (2.8) follows.

Remark 2.4. The studies of this paper can be extended to the family {φy}y∈Y which satis�es condition (2.My5)
of Def. 2.3 and, instead of (2.My6), the following less restrictive condition:

(2.M̃y6) there is a Markov map φỹ such that for each y ∈ Y:
(a) πy ≺ πỹ , i.e., for each V ∈ πy , there exists U ∈ πỹ which contains V , and
(b) for each V ∈ πy , φy(V) is a union of a number of U ∈ πỹ.

In this situation each φy(j) = φyj ◦ φyj−1 ◦ · · · ◦ φ1 is de�ned on the interval of the form:

Iy(j)k(j)
df= Iy1k0 ∩ φ

−1
y(1)(I

y2
k1 ) ∩ φ

−1
y(2)(I

y3
k2 ) ∩ · · · ∩ φ

−1
y(j−1)(I

yj
kj−1 ) ∈ πy(j).

The following family can serve as a simple example: {φi}∞i=1 where φi = φi, and φ is a Markovmap. Note that
conditions (2.M4) and (2.My4) are equivalent in this case, if P({i}) > 0 for i ≥ 1.

We close this sectionwith the following criterion of the convergence in L1 of the iterates Pn ofMarkov operator.
It is used in the proof of Th. 3.3.

Theorem 2.5. Let there exist h ∈ L1, h ≥ 0with ‖h‖ > 0, andadense subset G0 ⊆ G such that lim
j→∞
‖(Pjg−h)−‖ =

0, for g ∈ G0, where (Pjg − h)− = max{0, −(Pjg − h)}. Then there exists exactly one P-�xed point g0 ∈ G such
that

lim
j→∞

Pjg = g0, for all g ∈ G.

Proof. We refer to [8], Theorem 3.

3 Convergence theorem
Let {φy}y∈Y be a family of Markov maps in the sense of Def. 2.3, Σ(Y) − σ-algebra of all Borel-measurable
subsets of Y (where Y is a Polishmetric space), p a probability measure on (Y , Σ(Y) ), and Py the F-P operator
of the Markov map φy.
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We put
Pf df=

∫
Py f dp(y) for f ∈ L1(m). (3.1)

It follows from the de�nition, and the fact that the F-P operator Py : L1(m) → L1(m) (given by (2.8)) is a
Markov operator, that P : L1(m)→ L1(m) is also a Markov operator.

Indeed, from (3.1) and Fubini’s Theorem we have for f ≥ 0:∫
Pf dm =

∫ {∫
Py f dp(y)

}
dm =

∫ {∫
Py f dm

}
dp(y)

=
∫ {∫

f dm
}
dp(y) =

∫
f dm.

In general case we have f = f + − f −, where f + = max{0, f}, and
f − = max{0, −f}, it concludes the proof.
Operator P is called, in this note, the Markov operator of F-P type.

Let Pj = PPj−1(j ≥ 2), then from (3.1), (2.1) and (2.8) it follows that

Pj f =
∫
Py(j)f dp

j(y1, ..., yj), (3.2)

where Py(j) is the F-P operator corresponding to φy(j) de�ned by (2.3), and pj = p × · · · × p︸ ︷︷ ︸
j−times

.

The Markov operator P of F-P type given by (3.1) has the following probabilistic interpretation:

Let ξ1, ξ2, ... be a sequence of Y-valued random elements (indices) de�ned on a probability space
(Ω, Σ(Ω), p1). For each (x, ω) ∈ I × Ω we put

xj(x, ω)
df=

{
x, for j = 0,
φξj(ω)(xj−1) = φξ (j)(ω)(x), for j ≥ 1,

(3.3)

where ξ (j)(ω) = (ξj(ω), ..., ξ1(ω)).
We assume thatΩ = Y∞ is a direct product space, Σ(Ω)−σ-algebra of all Borel measurable subsets of Y∞,

p1 = p∞ = p × p × . . . – direct product measure, and ξj(ω) = ωj for ω ∈ Ω where ωj is the j-th coordinate of
ω = (ω1, ω2, ...) ∈ Y∞. Thus {ξj}∞j=1 is a sequence of identically p-distributed independent Y-valued random
elements (indices).

Let (Ω̃, Σ(Ω̃), Prob) be a probability space with Ω̃ = I ×Ω and Prob = m̃ ×p1, where m̃ is a probability mea-
sure on Σ(I). Then the sequence {xj}∞j=0 de�ned by (3.3) is a sequence of random vectors over (Ω̃, Σ(Ω̃), Prob).
Note that { x0 ∈ B } = B × Ω, hence Prob(x0 ∈ B) = m̃(B) for any B ∈ Σ(I).

It turns out that if the initial probability distribution is absolutely continuous, then the probability distri-
bution of each random vector xj, de�ned by (3.3), is also absolutely continuous:

Proposition 3.1. If Prob(x0 ∈ B)
df=
∫
B g dm for all B ∈ Σ(I), where g ∈ L1(m) and g ≥ 0, ‖g‖ = 1, then

Prob(xj ∈ B) =
∫
B

Pjg dm (j = 1, 2, ...)

for all B ∈ Σ(I) where Pj is the j-th iterate of the Markov operator P of F-P type de�ned by (3.1).

Proof. We refer to [7], Prop. 3.1.

The convergence of the sequence {Pj} of the iterates of the Markov operator P of F-P type associated with
{xj} is established under two general conditions. We are going now to formulate the �rst of them.

Let φy(j) be a Markov map given by (2.3) and let Py(j) be its F-P operator given by (2.8). We put

Ay(j)k(g)
df= ess sup{Py(j)g(x) : x ∈ Ik ∩ spt(Py(j)g)},
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ay(j)k(g)
df= ess inf{Py(j)g(x) : x ∈ Ik ∩ spt(Py(j)g)},

where spt(g) df= {x : g(x) > 0}.

Now we give the following:

De�nition 3.2. A density g ∈ G, belongs to G(C*), 0 < C* < ∞, i� there exist constants Cy(j)(g) ≥ 1, y(j) ∈ Y j,
j ≥ j1(g), such that the following two conditions are satis�ed:
(a) Ay(j)k(g) ≤ Cy(j)(g)ay(j)k(g) a.e. [pj], j ≥ j1(g), and

(b) lim sup
j→∞

∫
ln Cy(j)(g) dp

j < C*.

Having de�ned the set G(C*) we are in a position to formulate the �rst condition:

(3.H1) (Distortion Inequality for the family Py(j), y(j) ∈ Y j) There exists a constant 0 < C* < ∞ such that the
set G(C*) de�ned by Def. 3.2 contains a subset dense in G.

To formulate the second condition we de�ne �rst the following auxiliary function:

uw(2r)(x)
df= inf{gw(2r)k(r)(x) : k(r) ∈ K

r , and Iw(r−1)k(r) ≠ ∅}, (3.4)

where
gw(2r)k(r)

df=
∑
k̃(r)

σ̃w̃(r)k̃(r)
∫

Iw̃(r−1)
k̃(r)

σ̃w(r)k(r) dm, (3.5)

w(2r) = (w̃(r), w(r)) ∈ Y r × Y r , (in (3.5) we put w̃(r) = (w̃r , ..., w̃1), and k̃(r) = (k̃0, ..., k̃r−1)); further

σ̃w(r)k(r)
df=

σw(r)k(r)
m(Iw(r−1)k(r) )

, (3.6)

where Iw(r−1)k(r) , and σw(r)k(r) are de�ned, respectively by (2.4) and (2.6).

The second condition reads as follows:

(3.H2) There exists r̃ ≥ 1 such that 0 < ‖
∫
uw(2r̃) dp

2r̃‖ < ∞.

The theorem below states that the semi-dynamical system given by (3.3) evolves to a stationary distribu-
tion under the above two conditions.

Theorem 3.3. (Convergence Theorem) Assume that a family {φy}y∈Y of Markov maps satis�es (3.H1) and
(3.H2). Then there exists exactly one P-�xed point g0 ∈ G, that is Pg0 = g0, such that

lim
j→∞

Pjg = g0, for all g ∈ G.

Proof. The point is to show that for each r ≥ 1, the function

u2r
df= Ĉ exp

(∫
ln uw(2r) dp

2r
)
, where Ĉ = exp(−2C*), (3.7)

is a function for P which, under condition (3.H1), plays the role of h from Theorem 2.5. That is, it satis�es the
relation

lim
j→∞
‖(Pj+2rg − u2r)−‖ = 0 for all g ∈ G. (3.8)

To this end note that by condition (3.H1) there exists a subset G̃ ⊆ G(C*) dense in G. Thus for any g ∈ G̃
there exists, by Def. 3.2 (a), j1 = j1(g) such that the following inequalities hold:

C−1y(j)(g) ≤ Py(j)g(y)/Py(j)g(x) ≤ Cy(j)(g) (3.9)
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for each j ≥ j1, all y(j) ∈ Y j , any Ik ∈ π and m × m a.e. (x, y) ∈ Ik × Ik.
These inequalities imply the following estimate:

C−1y(j)(g)Frw(r)(Py(j)g) ≤ Pw(r)Py(j)g ≤ Cy(j)(g)Frw(r)(Py(j)g) (3.10)

for every r ≥ 1, j ≥ j1 and all w(r) ∈ Y r , y(j) ∈ Y j; where Cy(j)(g) are constants involved in Def. 3.2, and Frw(r)
is de�ned by the following formula:

Frw(r)(g)
df=
∑
k(r)

σ̃w(r)k(r)
∫

Iw(r−1)k(r)

g dm. (3.11)

In the last formula σ̃w(r)k(r) and I
w(r−1)
k(r) are de�ned by (3.6) and (2.4), respectively.

To see it note that from (3.9) we obtain

C−1y(j)(g)(Py(j)g)w(r)k(r)(x)σw(r)k(r)(x) ≤(Py(j)g)w(r)k(r)(y)σw(r)k(r)(x)

≤Cy(j)(g)(Py(j)g)w(r)k(r)(x)σw(r)k(r)(x),

for each Jw(r)k(r) = φw(r)k(r)(I
w(r−1)
k(r) ), all x, y ∈ Jw(r)k(r) , and j ≥ j1(g); where

(Py(j)g)w(r)k(r)(x)
df= (Py(j)g) ◦ φ−1w(r)k(r)(x), or 0, according as x ∈ Jw(r)k(r) , or x ∈ I \ J

w(r)
k(r) .

Integrating the above inequalities with respect to x on Jw(r)k(r) andmultiplying by σ̃w(r)k(r)(y), then summing
the resulting inequalities with respect to all k(r) and �nally using equality (2.8) one gets the desired double
inequality (3.10).

Let w(2r) = (w̃(r), w(r)) ∈ Y r × Y r, then iterating the �rst of the double inequality (3.10), by using the
equalities

Pw(2r) = Pw̃(r)Pw(r),

∑
k(r)

‖1Iw(r−1)k(r)
Py(j)g‖ = 1, (3.12)

and the formula (3.11), one gets for every r ≥ 1, j ≥ j1(g), and all w̃(r), w(r) ∈ Y r, and y(j) ∈ Y j:

Pw(2r)Py(j)g ≥ C
−1
z(r+j)(g)C

−1
y(j)(g)Frw̃(r)(Frw(r)Py(j)g)

≥ C−1z(r+j)(g)C
−1
y(j)(g)uw(2r), (3.13)

where z(r + j) = (w(r), y(j)) and uw(2r) is de�ned by formulas (3.4), and (3.5).
Integrating the above inequalities with respect tow(2r) = (w̃(r), w(r)), and y(j), using Jensen’s inequality

and condition (b) of Def. 3.2, and applying formulas (2.2) together with (3.2), give:

Pj+2rg ≥ u2r ,

where u2r is de�ned by (3.7).
The last inequality implies that (3.8) holds. This is so because G̃ ⊆ G is dense, and P is a contraction.
Thus we have proved that for each r ≥ 1, u2r indeed plays the role of h from Theorem 2.5 for P; possibly

the trivial one, if ‖
∫
uw(2r) dp

2r‖ = 0. To exclude the trivial possibility we have to assume the existence

of a nontrivial function u2r for P, for some r ≥ 1, that is condition (3.H2). Then by Theorem 2.5 we have
lim
j→∞

Pjg = g0, for all g ∈ G. From this and the inequality

‖g0 − Pg0‖ ≤ ‖g0 − Pj+1g‖ + ‖Pjg − g0‖ for all g ∈ G,

it follows that Pg0 = g0, i.e. the density g0 is P-invariant. This �nishes the proof of the theorem.
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4 An application to a family {φy}y∈Y of C1+α, 0 < α ≤ 1 in Rd

We use the following notation: Rd – d-dimensional Euclidean space (d ≥ 1); | · | – the Euclidean norm; I – a
domain in Rd, i.e. an open, connected subset of Rd; Σ – σ-algebra of all Borel-measurable subsets of I; m –
the Lebesgue measure on Rd; diam(A) – the diameter of the set A.

A C1+α-smooth Markov map φ, 0 < α ≤ 1, means a Markov map in the sense of Def. 2.2 and such that: the
partition π of φ consists of domains, and the restriction φk, of φ to any Ik ∈ π, is a C1+α-di�eomorphism.

In this section we consider a family {φy}y∈Y of C1+α-smooth Markov maps which satisfy the following
C1+α-variant of the so-called Reńyi’s Condition (see e.g. [9] or [10]):

(4.Hy4) Let {φy}y∈Y be a family of C1+α-smooth Markov maps. There exist constants C10,y(r) > 0, y(r) ∈ Y r,
such that for k(r) ∈ Kr , r = 1, 2, ..., and all Ik ∈ π one has:
(a) |σy(r)k(r)(x) − σy(r)k(r)(y)| ≤ C10,y(r)σy(r)k(r)(y)|x − y|α

for all x, y ∈ Jy(r)k(r) ∩ Ik, where σy(r)k(r) is de�ned by (2.6), and

Jy(r)k(r) = φy(r)k(r)(I
y(r−1)
k(r) ).

Furthermore, the constants C10,y(r) > 0 satisfy the following condition:

(b) lim sup
j→∞

∫
C10,y(j) dp

j < ∞.

Let {φy}y∈Y be a given family of C1+α-smooth Markov maps, and let {πy(r) : y(r) ∈ Y r , r = 1, 2, ...}
be a family of partitions whose elements are de�ned by (2.4). We assume that this family has the following
generating property:

(4.Hy7) (Generating Condition on {πy(r) : y(r) ∈ Y r , r = 1, 2, ...})

lim
j→∞

∫ {
sup
k(j+1)

diam(Iy(j)k(j+1))
α
}
dpj = 0.

We are going now to examine the convergence of {Pjg} under conditions (3.H2) (4.Hy4[a, b]), and (4.Hy7).
We show that condition (4.Hy4[a, b]) together with condition (4.Hy7) implies condition (3.H1). Then under
(3.H2) one gets the thesis of Th. 3.3. It turns out that one can take as a dense subset occurring in condition
(3.H1) the following:

De�nition 4.1. We denote by Gα , 0 < α ≤ 1, the class of all densities g ∈ G satisfying the following three
conditions:
(a) spt(g) df= {x ∈ I : g(x) > 0} is a sum of a number of Ik ∈ π;
(b) for each Ik ∈ π, g|Ik ∈ C

0+α(Ik), and

|g(x) − g(y)| ≤ C(g) g(y)|x − y|α for all x, y ∈ spt(g) ∩ Ik;

where C(g) is a constant depending on g.

The following theorem is a consequence of Th. 3.3:

Theorem 4.2. Let a family {φy}y∈Y of C1+α-smooth Markov maps satisfy conditions (4.Hy4[a, b]), (4.Hy7),
and (3.H2). Then there exists exactly one P-�xed point g0 ∈ G such that

lim
j→∞

Pjg = g0, for all g ∈ G.

Proof. We show that

Gα ⊆ G(C*) for an arbitrary C* > lim sup
j→∞

∫
ln Cy(j)(g) dp

j , (4.1)
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here in (4.1), for g ∈ Gα, we de�ne

Cy(j)(g)
df=
{
1 + C(g) sup

k(j+1)∈K j+1
diam(Iy(j)k(j+1))

α
}{

1 + C̃α0C10,y(j)
}
, (4.2)

where C̃α0 = sup{(diam(Ik))α : k ∈ K}.
Note that by conditions (4.Hy4[b]) and (4.Hy7) we have

lim sup
j→∞

∫
ln Cy(j)(g) dp

j ≤ C̃α0 lim sup
j→∞

∫
C10,y(j) dp

j < ∞, (4.3)

that is condition (b) of Def. 3.2 holds.
It remains to show the �rst condition of that de�nition holds. Let g ∈ Gα, then for any y(j) ∈ Y j , k(j) ∈

K j , j = 1, 2, ..., and for any x, z ∈ Ir the following inequality holds:

g ◦ φ−1y(j)k(j)(x)/g ◦ φ
−1
y(j)k(j)(z) ≤ 1 + C(g) sup

k(j+1)
diam(Iy(j)k(j+1))

α .

Next, by condition (4.Hy4[a]), we have the following inequality (for any y(j) ∈ Y j , k(j) ∈ K j , j = 1, 2, ...,
and for any x, z ∈ Ir):

σy(j)k(j)(x)/σy(j)k(j)(z) ≤ 1 + C̃
α
0C10,y(j),

where C̃α0 = sup{(diam(Ik))α : k ∈ K}.
Therefore for any y(j) ∈ Y j , j = 1, 2, ..., Ik ∈ π, and for any x, z ∈ Ik we have

Py(j)g(x) ≤ Cy(j)(g)Py(j)g(z),

where Cy(j) are de�ned by (4.2). Hence condition (a) of Def. 3.2 holds for g ∈ Gα too.
The last inequality, and relations (4.2), (4.3) show that (4.1) holds. This implies condition (3.H1) because

Gα is dense in G.

Remark 4.3. (Final Remark) We present two cases of particular nature of the system (3.3) (for more details
see [7], Examples (5.1), and (5.3)).

Example 4.4. The �rst particular case is the following xj(x, ω) = φξj(ω)(xj−1), for j = 1, 2, .... The stochastic
perturbation of the system arises from not knowing the precise number of iterations. That kind of stochastic
perturbation has no in�uence on the statistical behaviour of the deterministic system xj = φj(xj−1), for j =
1, 2, ....

Example 4.5. The second case of stochastic perturbation is the following xj(x, ω) = ζj(ω)φ(xj−1), for j =
1, 2, .... In that case stochastic perturbation appears in a multiplicative way (it is the so called parametric
noise). Such a perturbation changes essentially the statistical behaviour of the system. It illustrates the exam-
ple: Let φy(x) = y tan(x), y ∈ Y = {b, 1}; and p1(ζj = b) = 1 − a, and p1(ζj = 1) = a, for j = 1, 2, ..., where
b > 1, and 0 < a < 1.

Here φ1(x) = tan(x) is (a Markov map) without any invariant density [11]. However, the considered ran-
dom system has P-invariant density, but its deterministic counterpart, i.e. when Y = {1}with p1(ζj = 1) = 1,
not.

Acknowledgement: The authors thank the referees for their valuable remarks and comments on this paper.
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