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Abstract: Existence of fixed point of a Frobenius-Perron type operator P : L' —; L! generated by a family
{@y}yey of nonsingular Markov maps defined on a o-finite measure space (I, X, m) is studied. Two fairly
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1}, the convergence (in the norm of L) of the sequence {P/ 8}72; to aunique fixed point go. The general result
is applied to a family of C1*%-smooth Markov maps in R,
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1 Introduction

Let be given a randomly perturbed semi-dynamical system that evolves according to the rule:
Xj=@g(xiq) for j=1,2,..,

where {@y},cy is a family of nonsingular Markov maps defined on a subset I C R? (bounded or not), d > 1,
and {;};°; is a sequence of identically distributed independent Y-valued random elements, where Y is a
Polish metric space (i.e., a complete separable metric space).

Investigation of the asymptotic properties of such a semi-dynamical system leads to the study of the
convergence of the sequence {P/ 1721 of iterates of some Frobenius-Perron type operator P which is Markov
operator, i.e. ||Pf|| = ||f||,and Pf > 0iff > 0, acting in L' (Markov operator of F-P type, in short). More precisely,
letg = 0, ||g]| = 1, if Prob(xg € B) ¢ /5 & dm (m denotes the Lebesgue measure on I), then Prob(x; € B) =
I3 P'g dm, where P is the Markov operator of F-P type defined by (3.1) (see Proposition 3.1).

We establish two fairly general conditions: conditions (3.H1) and (3.H2), and prove that under
those conditions the system in question evolves to a stationary distribution. That is, the sequence
{Pj }721 converges (in the norm of L!) to a unique fixed point go € G (Th. 3.3). The two con-
ditions are probabilistic analogues of conditions (3.H1) and (3.H2) in [1], respectively. Actually, if
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oy = @,y € Y, thatisif x; = ¢ é’i(xi-l) = @(xj_1) is a deterministic semi-dynamical system
(¢ is a fixed Markov map), then we get two mentioned conditions given in [1].
As an application of this general result we show that the randomly perturbed semi-dynamical system
generated by a family of C'**-smooth Markov maps in R¢ evolves to a unique stationary density (Th. 4.2).
Similar problems were considered by several authors: eg. [2-4], and the references therein.

2 Preliminaries

Let (I, ¥, m) be a o-finite atomless (non-negative) measure space. Quite often the notions or relations occur-
ring in this paper (in particular, the considered transformations) are defined or hold only up to the sets of
m-measure zero. Henceforth we do not mention this explicitly.

The restriction of a mapping 7 : X — Y to a subset A C X is denoted by 7|4 and the indicator function of
aset Aby1y,.

Let 7 : I — I be a measurable transformation i.e., 7" 1(A) € X for each A € Z. It is called nonsingular iff
mo1 ! ~mie., foreach A € Z, m(t71(4)) = 0 & m(4) = 0.

We give a few definitions. The following kind of transformations is considered in this paper:

Definition 2.1. A nonsingular transformation ¢ from I into itself is said to be a piecewise invertible iff

(2.M1) one can find a finite or countable partition 7 = {I; : k € K} of I, which consists of measurable subsets
(of I) such that m(I}) > O for each k € K, and sup{m(I;) : k € K} < oo, here and in what follows K is an
arbitrary countable index set;

(2.M2) for each I € m, the mapping ¢, = ¢y, is one-to-one of I; onto J; = ¢;(I;) and its inverse ol is
measurable.

Definition 2.2. A piecewise invertible transformation ¢ is said to be a Markov map iff its corresponding
partition  satisfies the following two conditions:
(2.M3) mis a Markov partition i.e., for each k € K,

o) = | J{I; : mle() N 1) > 0};

(2.M4) ¢ is indecomposable (irreducible) with respect to 7 i.e., for each (j, k) € K? there exists an integer
n > 0 such that I C ¢"(I)).

In what follows we denote by || - || thenormin L' = L(I, X, m) and by G = G(m) the set of all (probabilistic)
densities i.e.,
¢¥igecrl:g=0, and |g|| = 1}.

Let 7 : I — I be a nonsingular transformation. Then the formula
a d -1 1
P.f = %(mfor ) for fe L, 2.1

where dm; = f dm, and % denotes the Radon-Nikodym derivative, defines a linear operator from L! into
itself. It is called the Frobenius-Perron operator (F-P operator, in short) associated with 7 [5, 6].
Formula (2.1) is equivalent to the following one:

/Prfdm = mf(T’l(A)) = / fdm.

A T1(4)

From the definition of P; it follows that it is a Markov operator, i.e., Pr is a linear operator and for any
f € LY*(m) with f > 0, Pf > 0 and ||P-f|| = |If]|-

The last equality follows immediately from the second formula equivalent to (2.1) if one puts A = I. Fur-
ther, P:G C G, and P is a contraction, i.e. ||P¢|| < 1.
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Let 71, ..., 7j, (j 2 2), be some nonsingular transformations. Denote by P; 1), P, . ;1) and P

.....

1<i<j,theF-P operators associated with the transformations 7(;, 1) =Tjo---0T1, T(j 1) =Tjo 0 Ti+1
and 7 1) =T;o---oTy,respectively. Then

Pg,..0 = Pj,...unPa,...0 2.2)
in particular P; =P;...P;.

Definition 2.3. In what follows we consider a family {¢y}, <y of Markov maps such that:

(2.My5) Y is a Polish metric space and themap I x Y > (x, y) — @y (x) € Iis Z(I x Y)/2(I)-measurable;

(2.My6) there exists a partition 71 of I such that m, = 7 for each y € Y, where my is a Markov partition
associated with ¢y.

Forj=>1,andy,...,y; € Y, we denote y(j) = (yj, ..., ¥1) and then we set

‘Py(n 4’% *O Py (2.3)
Clearly, ¢,; : I — I'is a Markov map. Its Markov partition is given by

df _ - _ . .
Ty = TV (py(ll)(n) v <py(12)(rr) VooV <py(1j,1)(rr) provided j > 2.
It consists of the sets of the form:

df _
DY S Iy 0 0 ) N @y Ui 0+ 1 931y Ui ), (2.4)

where k(j) = (ko, k1, ..., kj_1) € K.
Let
df
Pyike) = (PyG))| -
then by condition (2.M2), ¢,;)(; is one-to-one mapping of I{g; D onto

i) df i
T € oy @iy ™) = oy, Ui ).

It is nonsingular, and (p;é)k(j), the mapping inverse to Py)kG)> is
measurable.
By Def. 2.3, 71,1y = 7y, = 7 and therefore I{Elg = Iy,; consequently @)y = (<py1)|1k0 = @),k and,

according to (2.M2), ¢, is one-to-one mapping of I; onto ]" ©yiI).

We have to adjust the indecomposable condition (2.M4) to the new case when a single Markov map ¢ is
replaced by a family {¢y},cy of Markov maps. We propose the following condition (see note at the end of
Rem. 2.4):

(2.My4) for each (j, k) € K? there exist an integer s > 0, and a subset Ys C Y® with p® (175) > 0 such that
I, C q)y(s)(lj) for all y(s) € Y°. Here p is a probability measure on X(Y), and p* = p x - - - x p.
——

s—-times
From the properties of ¢, it follows that the formula

df _ _
my(,)k(r)(A) =mo (py(lr)k(r)(A) = m((py(lr)k(r)(A)) for AcX, (2.5)

defines an absolutely continuous measure which is concentrated on ]{g) (i.e., My (i) 4) = My (i) (AnJ (r)))

and whose Radon-Nikodym derivative satisfies % > 0a.e.on ]{g ;

To see the latter property of the measure My (r)i(r)» NOte first that if % =0onA C ]{8, then

<p;(1r)k(r)(A) c 1\P"V ae., because

k(r)
_ dm ki
m(<p;(1r)k(,)(A) N I{E:) Dy - / % dm = 0. Therefore, A = ) a.e.

y(r)
ANy
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Weput(r=1,2,...)
d"gﬁ,?“” ., on ]y(r)

df k(r)? (
o = 2.6)
YOK() 0, on I\]{Eg,
next,
-1 y(r)
Fronn & Fe@yner o iy 2.7)
Y 0, on I\]{Eg-

and finally

af d -
P,,f = %(mf ° @), where dmy = fdm.
Then the F-P operator P, of the Markov map ¢, can be written in the following form
Pypf = Zf yOk(r) Oy - 2.8)
k(r)
Indeed, from Def. 2.3, (2.3) and (2.5) it follows that for any f € L?, f = 0, the following equalities hold:

/. Py(,)fdm = / %(mf o (p;(lr)) dm = mf(go)_’(lr)(A)) = Z / fdm
A

A k(r)Ay(r)k(r)

-1 b
=y / f o @y rer dMyie = / > _Frorn Oy | dm,

k(r) 4 a4 \ k()
where A,y = (p;(lr)k(r) (A), and dmy,(y) is given by (2.5). Hence (2.8) follows.
Remark 2.4. The studies of this paper can be extended to the family {¢y },cy which satisfies condition (2.M,5)
of Def. 2.3 and, instead of (2.My6), the following less restrictive condition:

(2.1\7Iy6) there is a Markov map ¢y such that foreach y € Y:
(@ my < my, i.e., for each V € my, there exists U € my which contains V, and
(b) foreach V € my, ¢y(V)is a union of a number of U € my.

In this situation each ¢,;) = @y; o @y, , o -+ 0 @1 is defined on the interval of the form:

() df -1 -1 -1 Vi
Ly = Ty 0 0y N 0y () N -+ Ny 0y ) € 1y
The following family can serve as a simple example: {¢;}~; where ¢; = @', and @ is a Markov map. Note that
conditions (2.M4) and (2.My4) are equivalent in this case, if P({i}) > O fori > 1.

We close this section with the following criterion of the convergence in L! of the iterates P" of Markov operator.

It is used in the proof of Th. 3.3.

Theorem 2.5. Let thereexisth € L', h = Owith ||h|| > 0, and a dense subset Gy C G such that lim || (Pig-h)7|| =
]—oo

0, for g € Go, where (P'g — h)™ = max{0, —(P’g - h)}. Then there exists exactly one P-fixed point gy € G such
that

lim P'g = go, forall g € G.

J—oo

Proof. We refer to [8], Theorem 3. O

3 Convergence theorem

Let {¢y},cy be a family of Markov maps in the sense of Def. 2.3, 2(Y) - g-algebra of all Borel-measurable
subsets of Y (where Y is a Polish metric space), p a probability measure on (Y, 2(Y)), and Py the F-P operator
of the Markov map ¢y.
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We put
Pfif/nydp(y) for fe L'(m). (3.1

It follows from the definition, and the fact that the F-P operator P, : L1(m) — L'(m) (given by (2.8)) is a
Markov operator, that P : L*(m) — L'(m) is also a Markov operator.
Indeed, from (3.1) and Fubini’s Theorem we have for f > 0:

Joram= [{ [ prap} am= [{ [ pran} ap)
{ o) o

In general case we have f = f* - f7, where f* = max{0, f}, and
f~ = max{0, —f}, it concludes the proof.
Operator P is called, in this note, the Markov operator of F-P type.

Let P/ = PPI71(j = 2), then from (3.1), (2.1) and (2.8) it follows that

Pf = /Py(j)fdpj(h»---,)/;), B2

where P, is the F-P operator corresponding to ¢,;) defined by (2.3), and P =px-xp.
N——
j-times

The Markov operator P of F-P type given by (3.1) has the following probabilistic interpretation:

Let &1, &5, ... be a sequence of Y-valued random elements (indices) defined on a probability space
(Q, 2(Q), p1). For each (x, w) € I x Q we put

xj(x, w) a {X’ for ]:: 0, (3.3)
Pgw)Xj-1) = Pyw)X), for j=1,

where £(j)(w) = (§j(w), ..., &1(w)).

We assume that Q = Y*° is a direct product space, 2(Q) - o-algebra of all Borel measurable subsets of Y*°,
p1=p~ =pxpx... - direct product measure, and {j(w) = w; for w € Q where wj is the j-th coordinate of
w = (w1, wy,...) € Y. Thus {{j}}’jl is a sequence of identically p-distributed independent Y-valued random
elements (indices).

Let (2, X(Q), Prob) be a probability space with Q = IxQ and Prob = mxp;, where misa probability mea-
sure on X(I). Then the sequence {x; }72o defined by (3.3) is a sequence of random vectors over (Q, 2(Q), Prob).
Note that { xo € B} = B x Q, hence Prob(xy € B) = m(B) for any B € X(I).

It turns out that if the initial probability distribution is absolutely continuous, then the probability distri-
bution of each random vector x;, defined by (3.3), is also absolutely continuous:

Proposition 3.1. If Prob(xy € B) & |z gdm for all B € X(I), where g € LY(m)andg =0, ||g|| = 1, then

Prob(x]-eB)=/Pjgdm G=1,2,..)
B

for all B € £(I) where P! is the j-th iterate of the Markov operator P of F-P type defined by (3.1).
Proof. We refer to [7], Prop. 3.1. O

The convergence of the sequence {Pj } of the iterates of the Markov operator P of F-P type associated with
{x;} is established under two general conditions. We are going now to formulate the first of them.
Let ¢, be a Markov map given by (2.3) and let P,; be its F-P operator given by (2.8). We put

df
A )k(8) = ess sup{Py;)g(x) : x € I N spt(P,;8)},
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af .
ayk(8) = ess inf{P,;8(x) : x € Ij N spt(P;8)},
where spt(g) a {x: g(x) > 0}.
Now we give the following:

Definition 3.2. A density g € G, belongs to G(C), 0 < C” < oo, iff there exist constants C,;(g) = 1, y(j) € Y,
j 2 j1(g), such that the following two conditions are satisfied:

@ A, =< Cy)@aygi(g) ae. [P],j 2 ji(g), and
(b) limsup/ln Cy»(®) dp’ < C".

jsoo
Having defined the set G(C") we are in a position to formulate the first condition:

(3.H1) (Distortion Inequality for the family P, ., y(j) € Y/) There exists a constant 0 < C* < oo such that the
y()
set G(C") defined by Def. 3.2 contains a subset dense in G.

To formulate the second condition we define first the following auxiliary function:

df .
Uy (0) = inf{g, om0 : k() € K, and T 203, (3.4)
where )
df ~ ~
Swenk = Y Tamin / Ow(rk(r) dm, (3.5)
k() )

k)
w(2r) = (W(r), w(r)) € Y x Y', (in (3.5) we put w(r) = (Wr, ..., w1), and k(r) = (ko, ..., k;_1)); further

df w(r)k(r)
w(r)k(r) = w(r—1)y° (3.6)
m(Iy )

where II‘:’((') D and Ok are defined, respectively by (2.4) and (2.6).
The second condition reads as follows:

(3.H2) There exists 7 = 1 such thatO < || / Uy(27) dp?|| < oo.

The theorem below states that the semi-dynamical system given by (3.3) evolves to a stationary distribu-
tion under the above two conditions.

Theorem 3.3. (CONVERGENCE THEOREM) Assume that a family {¢y},cy of Markov maps satisfies (3.H1) and
(3.H2). Then there exists exactly one P-fixed point go € G, that is Pgqy = go, such that

lim Pjg =go, forall g€ G.
j—reo

Proof. The point is to show that for each r > 1, the function
Usy df Eexp (/ In w0,y dp2’> ,  where C-= exp(-2C"), 3.7)

is a function for P which, under condition (3.H1), plays the role of h from Theorem 2.5. That is, it satisfies the
relation
lim ||(P"**'g - uy)7||=0 forall g € G. (3.8)
j—eo

To this end note that by condition (3.H1) there exists a subset G C G(C") dense in G. Thus for any g € G
there exists, by Def. 3.2 (a), j; = j1(g) such that the following inequalities hold:

C;(lj)(g) < Py58(y)/Pyj)8(x) < Cy5(8) (3.9)
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foreachj=ji,ally(j) € Y/, any I, € mrand mx ma.e. (x, y) € I x I.
These inequalities imply the following estimate:

Cy)&F i) (Py(n8) = PuinPy»8 < Cy) () F i (Pyp8) (3.10)

foreveryr=1, j>j; andall w(r) € Y, y(j) € Y/; where Cy(j)(g) are constants involved in Def. 3.2, and F,,,(,
is defined by the following formula:

df ~
Fryin(@) = Zaw(r)k(r) / gdm. (3.11)

k(r) D
k(r)

In the last formula () and I kw((r’)‘l) are defined by (3.6) and (2.4), respectively.
To see it note that from (3.9) we obtain
—1 V2N N
Gy &) Py)8),, (1t DTk X <(Py38),, 0 V0w ()

< Cy(]) (g) (Py(])g)w(r)k(r) (X) Uw(r)k(r) (X) )

for each ]kw((r')) = (pw(r)k(r)(lx/((rr “U) allx,y € ],V(V((rr)), and j = j1(g); where
— df _ .
(Py(]-)g)w(r)k(r)(x) = (Py;8) o (pwl(,)k(r) (x), or 0, according as x € ]]V("((rr)), orxell\ ]I‘i"((rr)).

Integrating the above inequalities with respect to x on J ;:”((r’)) and multiplying by &,k (v), then summing

the resulting inequalities with respect to all k(r) and finally using equality (2.8) one gets the desired double
inequality (3.10).
Let w(2r) = (W(r), w(r)) € Y™ x Y', then iterating the first of the double inequality (3.10), by using the
equalities
Pyan = PymPu»

> v Pyl = 1, (.12
k(r)
k(r)

and the formula (3.11), one gets for every r > 1, j = j;(g), and all W(r), w(r) € Y', and y(j) € V':

Pw(Zr)Py(j)g 2 C;(1r+j)(g)C;(lj)(g)FrW(r)(Frw(r)Py(j)g)
= ;(1r+j)(g)c;/(1j)(g)uw(2r)’ (3'13)
where z(r + j) = (w(r), y(j)) and u,,,,) is defined by formulas (3.4), and (3.5).

Integrating the above inequalities with respect to w(2r) = (W(r), w(r)), and y(j), using Jensen’s inequality
and condition (b) of Def. 3.2, and applying formulas (2.2) together with (3.2), give:

j+2r
P) g 2 uZl’;

where u,, is defined by (3.7).
The last inequality implies that (3.8) holds. This is so because G C G is dense, and P is a contraction.
Thus we have proved that for each r = 1, u,, indeed plays the role of h from Theorem 2.5 for P; possibly

the trivial one, if || / Uy(2r) dp®'|| = 0. To exclude the trivial possibility we have to assume the existence

of a nontrivial function u,, for P, for some r > 1, that is condition (3.H2). Then by Theorem 2.5 we have
lim P'g = gy, forall g € G. From this and the inequality

joreo
g0 — Pgoll < |Igo — P"*'g|| + |[P'g - go| forall geG,

it follows that Pgy = g, i.e. the density g is P-invariant. This finishes the proof of the theorem. O
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4 An application to a family {¢,},cy of C1*%, 0 < a < 1in R4

We use the following notation: RY - d-dimensional Euclidean space (d = 1); | - | - the Euclidean norm; I — a
domain in ]Rd, i.e. an open, connected subset of R4 ; 2 — o-algebra of all Borel-measurable subsets of I; m —
the Lebesgue measure on R?; diam(A) - the diameter of the set A.

A C**-smooth Markov map @, 0 < a < 1, means a Markov map in the sense of Def. 2.2 and such that: the
partition 77 of ¢ consists of domains, and the restriction ¢y, of ¢ to any I} € 7, is a C'**-diffeomorphism.

In this section we consider a family {¢y},cy of C 1+@_smooth Markov maps which satisfy the following
C'*®-variant of the so-called Refiyi’s Condition (see e.g. [9] or [10]):

(4.Hy4) Let {@y},cy be a family of C'**-smooth Markov maps. There exist constants C 10,y > 0, y() € Y7,
such that for k(r) € K", r =1, 2, ..., and all I; € 7 one has:

(@) 10,03k ) = Gy ke W < Cio,yn Oymrey WX =y
for all x,y € ]{Eg N I, where 0,y is defined by (26), and

M _ (r-1)
J {(r) - ‘py(r)k(r)(li(r) ).
Furthermore, the constants Cy () > O satisfy the following condition:
(b) lim sup/ C10,y() dp’ < co.

jroo

Let {@y},cy be a given family of C'**-smooth Markov maps, and let {mye yir) e Y, r=1,2,...}
be a family of partitions whose elements are defined by (2.4). We assume that this family has the following
generating property:

(4.Hy7) (Generating Condition on {my ¢ yneY,r=1,2,...1)

lim { sup diam(P’%) )“} dp’ = 0.
j—roo k(j+1) k(1)

We are going now to examine the convergence of {Pi g} under conditions (3.H2) (4.Hy4[a, b]), and (4.Hy 7).
We show that condition (4.Hy4|[a, b]) together with condition (4.H,7) implies condition (3.H1). Then under
(3.H2) one gets the thesis of Th. 3.3. It turns out that one can take as a dense subset occurring in condition
(3.H1) the following:

Definition 4.1. We denote by Gq, 0 < a < 1, the class of all densities g € G satisfying the following three
conditions:

(a) spt(g) af {x € I: g(x) > 0} is a sum of a number of I}, € m;

(b) foreachIy € 7, gy, € C®**(Iy), and

lg() - 8| < C(g) g)Ix —y|* forall x,y € spt(g) N Ii;
where C(g) is a constant depending on g.

The following theorem is a consequence of Th. 3.3:

Theorem 4.2. Let a family {@y},cy of C1*®-smooth Markov maps satisfy conditions (4.Hy4[a, b)), (4.Hy7),
and (3.H2). Then there exists exactly one P-fixed point gy € G such that

lim Pjg =go, forall g€ G.
]J—oo

Proof. We show that

G« C G(C") foran arbitrary C" > limsup / In Cy(;(2) dy’, (4.0

joreo



980 — P.Bugiel et al., Fixed point of some Markov operator of Frobenius-Perron type DE GRUYTER

here in (4.1), for g € G, we define

Cyp(@ & {1 +C(g) sup diam(I{gll))“}{l + Egclo,y@}, (4.2)
k(j+1)eKi+t
where Eg = sup{(diam(I;))* : k € K}.
Note that by conditions (4.Hy4[b]) and (4.H, 7) we have

lim sup / InCy 59 dp’ < C&lim sup/ Cro,() dp’ < oo, (4.3)
j—roo j—roo
that is condition (b) of Def. 3.2 holds.
It remains to show the first condition of that definition holds. Let g € Gq, then for any y(j) € ¥/, k() €
K, j=1,2,...,and for any x, z € I, the following inequality holds:

g0 0, /8 © PyGykp(2) < 1+ C(8) G diam(r ).

Next, by condition (4.Hy 4[a]), we have the following inequality (for any y(j) € Y/, k() e K, j=1, 2, ...,
and for any x, z € I;):
(k) X/ 0y k(@) < 1+ C5C10,5)s

where Eg = sup{(diam([;))* : k € K}.
Therefore for any y(j) € Y/, j=1,2,...,I; € m, and for any x, z € I; we have

Py;8(x) < Cy()(8)Py(;)8(2),

where C; are defined by (4.2). Hence condition (a) of Def. 3.2 holds for g € G4 too.
The last inequality, and relations (4.2), (4.3) show that (4.1) holds. This implies condition (3.H1) because
Gy is dense in G.
O

Remark 4.3. (FINAL REMARK) We present two cases of particular nature of the system (3.3) (for more details
see [7], Examples (5.1), and (5.3)).

Example 4.4. The first particular case is the following x;(x, w) = (pff(’”)(x)-,l), forj=1,2,.... The stochastic
perturbation of the system arises from not knowing the precise number of iterations. That kind of stochastic
perturbation has no influence on the statistical behaviour of the deterministic system x; = 7 (xj-1), for j =
1,2,....

Example 4.5. The second case of stochastic perturbation is the following x;(x, w) = {(w)p(x;_1), for j =
1, 2,.... In that case stochastic perturbation appears in a multiplicative way (it is the so called parametric
noise). Such a perturbation changes essentially the statistical behaviour of the system. It illustrates the exam-
ple: Let py(x) = ytan(x), y € Y = {b,1};and p1({; = b) = 1 -a, and p1({j = 1) = a, forj = 1, 2, ..., where
b>1,and0<a< 1.

Here ¢1(x) = tan(x) is (a Markov map) without any invariant density [11]. However, the considered ran-
dom system has P-invariant density, but its deterministic counterpart, i.e. when ¥ = {1} with p1(§; = 1) = 1,
not.

Acknowledgement: The authors thank the referees for their valuable remarks and comments on this paper.
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