期刊论文详细信息
Journal of Cellular and Molecular Medicine
Activators and inhibitors of the plasminogen system in Alzheimer’s disease
Rachel Barker1  Patrick G. Kehoe1 
[1] Dementia Research Group, Institute of Clinical Neurosciences, Clinical Sciences at North Bristol, Bristol University, Bristol, UK
关键词: plasminogen system;    Alzheimer’s disease;    amyloid β;   
DOI  :  10.1111/j.1582-4934.2011.01394.x
来源: Wiley
PDF
【 摘 要 】

Abstract

Accumulation and deposition of Aβ is one of the main neuropathological hallmarks of Alzheimer’s disease (AD) and impaired Aβ degradation may be one mechanism of accumulation. Plasmin is the key protease of the plasminogen system and can cleave Aβ. Plasmin is activated from plasminogen by tissue plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA). The activators are regulated by inhibitors which include plasminogen activator inhibitor-1 (PAI-1) and neuroserpin. Plasmin is also regulated by inhibitors including α2-antiplasmin and α2-macroglobulin. Here, we investigate the mRNA levels of the activators and inhibitors of the plasminogen system and the protein levels of tPA, neuroserpin and α2-antiplasmin in post-mortem AD and control brain tissue. Distribution of the activators and inhibitors in human brain sections was assessed by immunoperoxidase staining. mRNA measurements were made in 20 AD and 20 control brains by real-time PCR. In an expanded cohort of 38 AD and 38 control brains tPA, neuroserpin and α2-antiplasmin protein levels were measured by ELISA. The activators and inhibitors were present mainly in neurons and α2-antiplasmin was also associated with Aβ plaques in AD brain tissue. tPA, uPA, PAI-1 and α2-antiplasmin mRNA were all significantly increased in AD compared to controls, as were tPA and α2-antiplasmin protein, whereas neuroserpin mRNA and protein were significantly reduced. α2-macroglobulin mRNA was not significantly altered in AD. The increases in tPA, uPA, PAI-1 and α2-antiplasmin may counteract each other so that plasmin activity is not significantly altered in AD, but increased tPA may also affect synaptic plasticity, excitotoxic neuronal death and apoptosis.

【 授权许可】

Unknown   
© 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd

【 预 览 】
附件列表
Files Size Format View
RO202107150012551ZK.pdf 483KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:1次