期刊论文详细信息
Cancer Medicine
LRP5 knockdown: effect on prostate cancer invasion growth and skeletal metastasis in vitro and in vivo
Shafaat A. Rabbani2  Ani Arakelian1 
[1] Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada;Department of Physiology, McGill University, Montreal, Quebec, Canada
关键词: Bone metastasis;    gene expression;    prostate cancer;    wnt signaling;   
DOI  :  10.1002/cam4.111
来源: Wiley
PDF
【 摘 要 】

Abstract

Prostate cancer (PCa) is a common hormone-dependent malignancy associated with the development of skeletal metastases. This is due to the increased expression of a number of growth factors, cytokines, and proteases which collectively drive the metastatic cascade in general and increased propensity to develop skeletal metastasis in particular. While a number of signaling pathways have been implicated in PCa progression, the highly complex wnt/β-catenin pathway is unique due to its ability to regulate gene expression, cell invasion, migration, survival, proliferation, and differentiation to contribute in the initiation and progression of PCa. Members of the wnt family bind to the Frizzle proteins or lipoprotein-related receptor proteins 5, 6 (LRP5, -6) to activate this key pathway. In the current study, we have investigated the role of wnt/β-catenin pathway in PCa progression, skeletal metastasis, and gene expression using the dominant negative plasmid of LRP5 (DN-LRP5) and human PCa cells PC-3. Inactivation of LRP5 resulted in mesenchymal to epithelial shift, lack of translocation of β-catenin to cell surface, increased tumor cell proliferation, decreased colony formation, migration and invasion in vitro. These effects were attributed to decreased expression of pro-invasive and pro-metastatic genes. In in vivo studies, PC-3-DN-LRP5 cells developed significantly smaller tumors and a marked decrease in skeletal lesion area and number as determined by X-ray, micro (μ) CT and histological analysis. Collectively results from these studies demonstrate the dominant role of this key pathway in PCa growth and skeletal metastasis and its potential as a viable therapeutic target.

【 授权许可】

CC BY   
© 2013 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

【 预 览 】
附件列表
Files Size Format View
RO202107150001351ZK.pdf 1349KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:1次