期刊论文详细信息
Micro & nano letters
Atomistic modelling of thin film argon evaporation over different solid surfaces at different wetting conditions
article
Mohammad Nasim Hasan1  Sheikh Mohammad Shavik1  Khaled Mosharraf Mukut1  Kazi Fazle Rabbi1  A H M Faisal1 
[1] Department of Mechanical Engineering, Bangladesh University of Engineering & Technology (BUET)
关键词: thin films;    argon;    vacuum deposition;    wetting;    molecular dynamics method;    hydrophobicity;    thermodynamic properties;    atomistic modelling;    thin film argon evaporation;    wetting;    nonequilibrium molecular dynamics simulations;    solid–liquid interfacial wettability;    evaporation characteristics;    flat solid surface;    three-phase simulation;    thermal equilibration;    hydrophilic wetting;    hydrophobic wetting;    platinum;    silver;    aluminium;    phase transition;    surface wettability;    thermal transport property;    heat flux;    evaporative mass flux;    macroscopic thermodynamics;    temperature 90 K;   
DOI  :  10.1049/mnl.2017.0198
学科分类:计算机科学(综合)
来源: Wiley
PDF
【 摘 要 】

In the present study, non-equilibrium molecular dynamics (MD) simulations have been performed to reveal the effect of solid–liquid interfacial wettability on the evaporation characteristics of thin liquid argon film placed over the flat solid surface. The atomistic model considered herein comprises of a three-phase simulation domain having a solid wall over which liquid argon and argon vapour co-exist. Initially, the system is thermally equilibrated at 90 K for a while after which rapid increase in the solid wall temperature induces a phase change process, i.e. evaporation. Both hydrophilic and hydrophobic wetting conditions of the solid surface have been considered at an evaporation temperature of 130 K for three different surface materials such as platinum, silver, and aluminium. The simulation results show that both the surface wettability and surface material have a significant role in phase transition phenomena of thin liquid film, particularly the surface wettability for the present system configuration. The thermal transport phenomena between the wall and liquid thin film have been studied thoroughly and discussed in terms of wall heat flux, evaporative mass flux, upper bound of maximum possible heat flux etc. The results obtained in the present MD simulation study are compared with the macroscopic predictions based on classical thermodynamics. Interestingly, a very good agreement has been found indicating that macroscopic thermodynamics approach can predict the characteristic of phase change phenomena of nanoscale thin liquid film.

【 授权许可】

CC BY|CC BY-ND|CC BY-NC|CC BY-NC-ND   

【 预 览 】
附件列表
Files Size Format View
RO202107100003233ZK.pdf 741KB PDF download
  文献评价指标  
  下载次数:5次 浏览次数:3次