Сибирский математический журнал | |
The Regularity of Inverses to Sobolev Mappings and the Theory of \( \mathcal{Q}_{q,p} \) -Homeomorphisms | |
article | |
S. K. Vodopyanov1  | |
[1] Sobolev Institute of Mathematics | |
关键词: quasiconformal analysis; Sobolev space; composition operator; capacity estimate; | |
DOI : 10.1134/S0037446620060051 | |
学科分类:数学(综合) | |
来源: Izdatel stvo Instituta Matematiki Rossiiskoi Akademii Nauk | |
【 摘 要 】
We prove that each homeomorphism $ \varphi:D\to D^{\prime} $ of Euclidean domains in $ ?^{n} $ , $ n\geq 2 $ , belonging to the Sobolev class $ W^{1}_{p,\operatorname{loc}}(D) $ , where $ p\in[1,\infty) $ , and having finite distortion induces a bounded composition operator from the weighted Sobolev space $ L^{1}_{p}(D^{\prime};\omega) $ into $ L^{1}_{p}(D) $ for some weight function $ \omega:D^{\prime}\to(0,\infty) $ . This implies that in the cases $ p>n-1 $ and $ n\geq 3 $ as well as $ p\geq 1 $ and $ n\geq 2 $ the inverse $ \varphi^{-1}:D^{\prime}\to D $ belongs to the Sobolev class $ W^{1}_{1,\operatorname{loc}}(D^{\prime}) $ , has finite distortion, and is differentiable $ {\mathcal{H}}^{n} $ -almost everywhere in $ D^{\prime} $ . We apply this result to $ \mathcal{Q}_{q,p} $ -homeomorphisms; the method of proof also works for homeomorphisms of Carnot groups. Moreover, we prove that the class of $ \mathcal{Q}_{q,p} $ -homeomorphisms is completely determined by the controlled variation of the capacity of cubical condensers whose shells are concentric cubes.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202106300004674ZK.pdf | 455KB | download |