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THE REGULARITY OF INVERSES TO SOBOLEV MAPPINGS
AND THE THEORY OF Qq,p-HOMEOMORPHISMS
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Abstract: We prove that each homeomorphism ϕ : D → D′ of Euclidean domains in Rn, n ≥ 2, be-
longing to the Sobolev class W 1

p,loc(D), where p ∈ [1,∞), and having finite distortion induces a bounded

composition operator from the weighted Sobolev space L1
p(D′;ω) into L1

p(D) for some weight function
ω : D′ → (0,∞). This implies that in the cases p > n−1 and n ≥ 3 as well as p ≥ 1 and n ≥ 2 the inverse
ϕ−1 : D′ → D belongs to the Sobolev class W 1

1,loc(D
′), has finite distortion, and is differentiable H n-

almost everywhere in D′. We apply this result to Qq,p-homeomorphisms; the method of proof also works
for homeomorphisms of Carnot groups. Moreover, we prove that the class of Qq,p-homeomorphisms is
completely determined by the controlled variation of the capacity of cubical condensers whose shells
are concentric cubes.
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Introduction

The main content of this article consists in proving the following characteristic feature of Sobolev-class
homeomorphisms (see Theorem 25) together with ensuing properties.

Proposition 1. If a homeomorphism ϕ = (ϕ1, . . . , ϕn) : D → D′, where D,D′ ⊂ Rn are open
domains and n ≥ 2, belongs to the Sobolev class W 1

p,loc(D) with p ∈ [1,∞) and has finite distortion

then ϕ induces the bounded composition operator ϕ∗ : L1
p(D

′;ω) ∩ Lipl(D
′) → L1

p(D) as ϕ∗(u) = u ◦ ϕ
for u ∈ L1

p(D
′;ω) ∩ Lipl(D

′) with some weight function ω : D′ → (0,∞) specified in (30).

Recall that a function u : D → R on some open set D ⊂ Rn is of Sobolev class L1
p(D) whenever u

is locally summable on D, possesses the generalized derivatives ∂u
dxj

∈ L1,loc(D) for all j = 1, . . . , n (i.e.,
∂u
dxj

∈ L1(U) for every compactly embedded domain U � D), and has the finite seminorm

∥
∥u | L1

p(D)
∥
∥ =

(∫

D

|∇u(y)|p dy
) 1

p

, 1 ≤ p ≤ ∞.

Henceforth we denote the space of locally Lipschitz functions defined on D′ by Lipl(D
′). It is obvious

that Lipl(D
′) = W 1

∞,loc(D
′) ∩ C(D′).

A mapping ϕ = (ϕ1, . . . , ϕn) is of Sobolev class W 1
p,loc(D) whenever ϕj(x) and the generalized deriva-

tives
∂ϕj

dxi
lie in Lp,loc(D) for all j, i = 1, . . . , n.

A mapping ϕ : D → Rn of Sobolev class W 1
1,loc(D) is called a mapping with finite distortion whenever

Dϕ(x) = 0 H n-a.e. on the set Z = {x ∈ D : detDϕ(x) = 0}. (1)

Henceforth Dϕ(x) =
(∂ϕj

∂xi
(x)
)

stands for the Jacobi matrix of ϕ at x ∈ D; while |Dϕ(x)|, for its Euclidean

operator norm and detDϕ(x), for its determinant, the Jacobian.
Proposition 1 about a functional characterization of Sobolev-class homeomorphisms underlies our

proof of the new properties of the inverse homeomorphism; see Theorem 27.
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Proposition 2. If a homeomorphism ϕ = (ϕ1, . . . , ϕn) : D → D′ of open domains D,D′ ⊂ Rn,
where n ≥ 2, belongs to W 1

p,loc(D) with p ∈ [1,∞) for n = 2 or p ∈ (n − 1,∞) for n ≥ 3 and has finite

distortion then the inverse homeomorphism ϕ−1 : D′ → D has the following properties:
(1) ϕ−1 belongs to W 1

1,loc(D
′);

(2) ϕ−1 has finite distortion;
(3) ϕ−1 is differentiable H n-almost everywhere in D′.
Assertions (1) and (2) are proved as Theorems 3.2 and 3.3 in [1] for n = 2 and p = 1 and as

Theorem 1.2 in [2] for n ≥ 3 and p > n − 1; these articles are motivated by applications to nonlinear
elasticity problems, see [3]; we can obtain assertion (3) from [4; 5, Theorem 2] for n = 2 and p = 1 and
from [6] for n ≥ 3 and p = n; the latter reference also includes a comprehensive bibliography.

The proof of the claims of Proposition 2 (see Theorem 27) is new, and conciser than the proofs cited
above. Moreover, the new proof also works on more complicated metric structures; see Section 4 which
establishes the analogs of Propositions 1 and 2 for Carnot groups.

This article naturally fits into the cycle of publications [7–12]. Originating in the series [13–20], it
resides at the junction of the theory of function spaces and geometric function theory [21–39]. Some
results of the articles found applications in nonlinear elasticity; see [40].

The main results of this article were formulated in [11].

1. Preliminaries

Recalling the main result of [10, 12], we can say that it amounts to a “weighted” generalization of
the results of [13–16] and [17–20] as regards 1 < q = p < ∞ and 1 < q < p < ∞.

Theorem 3 [10, 12]. Given a homeomorphism ϕ : D → D′ of domains D,D′ ⊂ Rn, where n ≥ 2,
and a locally summable function ω : D′ → (0,∞), the following are equivalent:

(1) the composition operator ϕ∗ : L1
p(D

′;ω) ∩ Lipl(D
′) → L1

q(D), where 1 ≤ q ≤ p < ∞, is bounded;

(2) for every annular1) condenser E = (F,U) ⊂ D′ such that ϕ−1(E) = (ϕ−1(F ), ϕ−1(U)) ⊂ D, we
have

cap
1
q
(

ϕ−1(E);L1
q(D)

) ≤
{

Kp cap
1
p
(

E;L1
p(D

′;ω)
)

, 1 < q = p < ∞,

Ψq,p(U \ F )
1
σ cap

1
p
(

E;L1
p(D

′;ω)
)

, 1 < q < p < ∞,
(2)

where Ψq,p is a bounded quasiadditive set function on some open subset of D′, while σ henceforth is
determined from the relation 1

σ = 1
q − 1

p if 1 ≤ q < p < ∞ and σ = ∞ if 1 ≤ q = p < ∞;

(3) ϕ : D → D′ belongs to W 1
q,loc(D) and has finite distortion; i.e., Dϕ(x) = 0 holds H n-almost

everywhere on the set Z = {x ∈ D | J(x, ϕ) = 0}, and the operator distortion function

D � x 
→ K1,ω
q,p (x, ϕ) =

{ |Dϕ(x)|
| detDϕ(x)|

1
p ω

1
p (ϕ(x))

if detDϕ(x) �= 0,

0 if detDϕ(x) = 0
(3)

is in Lσ(D).
Moreover, ϕ ∈ W 1

q,loc(D) and

2
−n

q

(3n

2

)−1∥
∥K1,ω

q,p (·) | Lσ(D)
∥
∥ ≤ ‖ϕ∗‖

≤ ∥∥K1,ω
q,p (·) | Lσ(D)

∥
∥ ≤

{

3n2
n−p
p Kp for q = p,

3n2
n−q
q Ψq,p(D

′)
1
σ for q < p.

(4)

Remark 4. The equivalence of claims (1)–(3) of Theorem 3 is proved in [10, 12] just for 1 < q ≤
p < ∞, which is due to the range of summability parameters in (2).

1)For our description of an annular condenser, see Definition 5.
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At the same time, the equivalence of claims (1) and (3) of Theorem 3 is proved in [10, 12, 41, 42] for
1 ≤ q ≤ p < ∞.

In this article we establish (see Corollary 29) that all claims of Theorem 3 are also equivalent for
1 = q ≤ p < ∞ and n = 2.

Indeed, the implication (1) ⇒ (2) in Theorem 3 is proved in [10, 12] for 1 < q; however, the same
argument works for n = 2 and q = 1.

The implication (2) ⇒ (3) for q = 1 and n = 2 is justified in Corollary 29 of this article.

Let us present the definitions of all concepts used in Theorem 3.
A locally summable function ω : D′ → R is called a weight whenever 0 < ω(y) < ∞ for H n-almost

all y ∈ D′. Recall that u : D′ → R is said to be of weighted Sobolev class L1
p(D

′;ω) with p ∈ [1,∞)

whenever u is locally summable on D′, while the generalized derivatives2) ∂u
∂yj

lie in Lp(D
′;ω) for all

j = 1, . . . , n.
The seminorm of u ∈ L1

p(D
′;ω) equals

∥
∥u | L1

p(D
′;ω)

∥
∥ =

(∫

D′

|∇u|p(y)ω(y) dy

) 1
p

. (5)

In the case ω ≡ 1 we simply write L1
p(D

′) instead of L1
p(D

′; 1).
Recall that a homeomorphism ϕ : D → D′ induces the bounded composition operator

ϕ∗ : L1
p(D

′;ω) ∩ Lipl(D
′) → L1

q(D), 1 ≤ q ≤ p < ∞,

that acts as follows D � x 
→ (ϕ∗u)(x) = u(ϕ(x)) whenever
∥
∥ϕ∗u | L1

q(D)
∥
∥ ≤ Kq,p

∥
∥u | L1

p(D
′;ω)

∥
∥ for every function u ∈ L1

p(D
′) ∩ Lipl(D

′)

holds with some constant Kq,p < ∞.

Definition 5. Refer as a condenser in a domain D′ ⊂ Rn to a pair E = (F1, F0) of connected
compact sets (continua) F1, F0 ⊂ D′.

If a continuum F lies in U , where U � D′ is a compactly embedded connected open set, then we
denote the condenser E = (F, ∂U) by E = (F,U).

A condenser E = (F, ∂U) is called annular whenever the complement in Rn to U \ F consists of
two closed sets each of which is connected: the bounded connected component is F and the unbounded
component is Rn \ U .

An annular condenser E = (F, ∂U) in Rn is called spherical or cubical whenever U is the ball3)

B(x,R) = {y ∈ Rn : |y − x|2 < R} or the cube Q(x,R) = {y ∈ Rn : |y − x|∞ < R}, while the continuum
F ⊂ U is the closure of the ball B(x, r) = {y ∈ Rn : |y − x|2 ≤ r} or the cube Q(x, r) = {y ∈ Rn :
|y − x|∞ < r}, where r < R.

A continuous function u : D → R of class W 1
1,loc(D) is called admissible for some condenser E =

(F1, F0) ⊂ D if u ≡ 1 on F1 and u ≡ 0 on F0.
Given a condenser E = (F1, F0), denote the collection of admissible functions by A (E).
Define the capacity of a condenser E = (F1, F0) in the space L1

q(D) with q ∈ [1,∞) as

cap
(

E;L1
q(D)

)

= inf
u∈A (E)

∥
∥u | L1

q(D)
∥
∥q, (6)

where the infimum is over all admissible functions of class A (E) for E = (F1, F0) ⊂ D.

2)The definition of generalized derivatives assumes that ∂u
dyj

∈ L1,loc(D
′).

3)Recall that the norm |x|p of a vector x = (x1, x2, . . . , xn) ∈ Rn is defined as |x|p =
(∑n

k=1 |xk|p
) 1

p for
p ∈ [1,∞) and |x|∞ = maxk=1,...,n |xk|. Each ball of the norm |x|2 or |x|∞ is a Euclidean ball or cube respectively.
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Define the weighted capacity of a condenser E = (F1, F0) ⊂ D′ in L1
p(D

′;ω) as

cap
(

E;L1
p(D

′;ω)
)

= inf
u∈A (E)∩Lipl(D′)

∥
∥u | L1

p(D
′;ω)

∥
∥p,

where the infimum is over all functions belonging to A (E) ∩ Lipl(D
′) and admissible for E = (F1, F0).

Henceforth, in D′ we mainly consider the annular condensers of the form E = (F,U).

Definition 6. Suppose that D is an open set in Rn. Denote by O(D) some system of open sets
in D with the following properties:

(a) if the closure B of an open ball4) B lies in D then B ∈ O(D);

(b) if U1, . . . , Uk ∈ O(D) is a disjoint system of open sets then
⋃k

i=1 Ui ∈ O(D) for arbitrary k ∈ N.
A mapping Φ : O(D) → [0,∞] is called a κ-quasiadditive set function whenever
(c) for each point x ∈ D there exists δ with 0 < δ < dist(x, ∂D) such that 0 < Φ(B(x, δ)) < ∞, and

if D = Rn then the inequality 0 ≤ Φ(D(x, δ)) < ∞ must hold for all δ ∈ (0, δ(x)), where δ(x) > 0 may
depend on x;

(d) for every finite disjoint collection of open sets Ui ∈ O(D), where i = 1, . . . , l, with

l⋃

i=1

Ui ⊂ U, where U ∈ O(D), we have
l∑

i=1

Φ(Ui) ≤ κΦ(U). (7)

If (7) holds with κ = 1 then we refer to Φ as a quasiadditive set function instead of 1-quasiadditive.
If for every finite collection {Ui ∈ O(D)} of disjoint open sets we have

n∑

i=1

Φ(Ui) = Φ
( n⋃

i=1

Ui

)

(8)

then Φ is called finitely additive, while if (8) holds for every countable collection {Ui ∈ O(D)} of disjoint
open sets then Φ is called countably additive.

A function Φ is monotone whenever Φ(U1) ≤ Φ(U2) provided that U1 ⊂ U2 ⊂ D and U1, U2 ∈ O(D).
It is obvious that every quasiadditive set function is monotone. A κ-quasiadditive set function

Φ : O(D) → [0,∞] is called bounded whenever supU∈O(D) < ∞.

Theorem 3 motivates us to select the following scale of mappings as an object of study in its own
right. Recall that f : D′ → Rn, where D′ is a domain in Rn, is called continuous, open, and discrete
whenever f is continuous in D′, the image of every open set is open, and the preimage f−1(y) of each
y ∈ f(D) is discrete.

Definition 7 [10, 12]. Say that a homeomorphism (or, more generally, a continuous, open, and
discrete mapping) f : D′ → D for D,D′ ⊂ Rn, where n ≥ 2, is of class Qq,p(D

′, D;ω), where 1 < q ≤
p < ∞ for n ≥ 3 and 1 ≤ q ≤ p < ∞ for n = 2, while ω ∈ L1,loc(D

′) is a weight function, whenever there
exist

(1) a constant Kp for q = p,
(2) a bounded quasiadditive function Ψq,p on an open set in D′ for q < p such that for every condenser

E = (F0, F1) in D′ with the image f(E) = (f(F0), f(F1)) in D we have
{

cap
1
p
(

f(E);L1
p(D)

) ≤ Kp cap
1
p
(

E;L1
p(D

′;ω)
)

if q = p,

cap
1
q
(

f(E);L1
q(D)

) ≤ Ψq,p(D
′ \ (F0 ∪ F1))

1
σ cap

1
p
(

E;L1
p(D

′;ω)
)

if q < p.
(9)

If (9) holds only for annular condensers E = (F,U) ⊂ D′,
{

cap
1
p
(

f(E);L1
p(D)

) ≤ Kp cap
1
p
(

E;L1
p(D

′;ω)
)

if q = p,

cap
1
q
(

f(E);L1
q(D)

) ≤ Ψq,p(U \ F )
1
σ cap

1
p
(

E;L1
p(D

′;ω)
)

if q < p,
(10)

4)Instead of balls, we can use cubes as elementary sets.
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then we obtain the larger class of homeomorphisms f : D′ → D which we will denote by RQq,p(D
′, D;ω).

If (10) holds only for spherical or cubical annular condensers then we again obtain the larger
class of homeomorphisms f : D′ → D which we will denote by SRQq,p(D

′, D;ω) or respectively
QRQq,p(D

′, D;ω).
It is obvious that

Qq,p(D
′, D;ω) ⊂ RQq,p(D

′, D;ω) ⊂ SRQq,p(D
′, D;ω) (QRQq,p(D

′, D;ω)).

Remark 8. In the case q = p = n the class Qn,n(D′, D;ω) of homeomorphisms includes [12, Sec-
tion 4.4] the class of the so-called Q-homeomorphisms [6] defined by a controlled variation of the modulus
of a family of curves.

The next theorem gives an analytical description of the mappings whose inverses are in Qq,p(D
′, D;ω).

Theorem 9 [10, 12]. A homeomorphism f : D′ → D belongs to RQq,p(D
′, D;ω), where 1 < q ≤ p <

∞ for n ≥ 3 and 1 ≤ q ≤ p < ∞ for n = 2, if and only if the inverse homeomorphism ϕ = f−1 : D → D′
satisfies either (1) or (3) of Theorem 3.

Proof. It is not difficult to observe that the claim that f ∈ RQq,p(D
′, D;ω), where 1 < q ≤ p < ∞

and 2 ≤ n, for a homeomorphism f : D′ → D is equivalent to claim (2) of Theorem 3 for the inverse
homeomorphism ϕ = f−1 : D → D′.

From this we deduce that claims (1) and (3) of Theorem 3 hold for ϕ : D → D′. Since this argument
is reversible, Theorem 9 is established in the case n > 2. Its validity in the case 1 = q ≤ p < ∞ and
n = 2 will be proved in Theorem 3, Remark 4, and Corollary 29 below. �

This article presents the new examples of classes of mappings in the family Qq,p(D
′, D;ω).

Remark 10. As [13–16] show, in the case 1 < q = p < ∞ and ω ≡ 1 the composition operator
ϕ∗ : L1

p(D
′) ∩ Lipl(D

′) → L1
p(D) of Theorem 3 extends by continuity to L1

p(D
′) and coincides with the

composition operator in the following sense:

L1
p(D

′) � u 
→ ϕ∗u =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

u ◦ ϕ, where u is a continuous representative

of u ∈ L1
p(D

′) for p ∈ (n,∞),

u ◦ ϕ, where u is an arbitrary representative

of u ∈ L1
p(D

′) for p ∈ [1, n].

For p = n the mappings of this class are quasiconformal. In [43] the mappings of this class for p �= n are
called p-morphisms.

Recall a few useful concepts: Given k ≥ 0, δ ∈ (0,∞], and A ⊂ Rn, put

H k
δ (A) =

ωk

2k
inf
{∑

i∈N

(diamTi)
k : diamTi < δ,A ⊂

⋃

i∈N

Ti

}

,

where ωk = π
k
2

Γ( k
2
+1)

, while the infimum is over all countable coverings {Ti} of A. If A cannot be countably

covered by sets of these sizes then set H k
δ (A) = ∞. The limit

H k(A) = lim
δ→0

H k
δ (A)

exists and is called the k-dimensional Hausdorff measure of A. In the Euclidean space Rn the n-
dimensional Hausdorff measure H n(A) of A ⊂ Rn coincides with the n-dimensional Lebesgue measure;
see [44, Theorem 2.3.4] for instance.

The quasiadditive set function Φ is differentiable in the following sense:
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Proposition 11 [45–47]. I. Suppose that a monotone quasiadditive set function Φ is defined on
some system O(D′) of open subsets of a domain D′. Then

(1) for H n-almost all y ∈ D′ the derivative5) exists and is finite:

lim
δ→0, y∈Bδ

Φ(Bδ)

H n(Bδ)
= Φ′(y);

(2) for every open set U ∈ O(D′) we have
∫

U

Φ′(y) dy ≤ Φ(U).

II. Suppose that a monotone κ-quasiadditive set function Φ is defined on some system O(D′) of open
subsets of a domain D′. Then

(3) for H n-almost all points y ∈ D′ the upper derivative exists and is finite:

lim
r→0

sup
0<δ<r, y∈Bδ

Φ (Bδ)

H n(Bδ)
= Φ

′
(y);

(4) for every open set U ∈ O(D′) we have
∫

U

Φ
′
(y) dy ≤ κΦ(U).

In all limits we can replace balls with cubes.

Example 12 (volume derivative). I. Consider an open set D′ in Rn and an injective continuous
mapping f : D′ → Rn. For each open set U ⊂ D′ the image f(U) is a Borel set, and so the set function Vn

is defined:
U 
→ Vn(U) = H n(f(U)).

The function Vn is defined on the open sets U ⊂ D′ and Vn is obviously monotone and countably additive.
By Proposition 11, the derivative V ′

n(y) exists and coincides for H n-almost all y ∈ D′ with the density
(volume derivative)

D′ � y 
→ Jf (y) = lim
r→0

H n(f(B(y, r)))

H n(B(y, r))
(11)

of the set function B(D′) � T 
→ H n(f(T )) defined on the σ-algebra B(D′) of Borel sets T ⊂ D′.
II. Consider an open set D′ in Rn and a continuous discrete open mapping f : D′ → Rn. Fix

some open set U � D′. Then f(U) is a bounded open set. Moreover, the multiplicity function (Banach
indicatrix)

f(U) � x 
→ N (x, f, U) = #{y ∈ U : f(y) = x}
is bounded; see [48, Proposition 4.1]. Put N (f, U) = supx∈f(U) N (x, f, U). We have N (f, U) < ∞.

The set function Vn:
U ⊃ V 
→ Vn(V ) = H n(f(V ))

on the open sets V ⊂ U is a monotone κ-quasiadditive set function with the constant κ = N (f, U).
Indeed, if Vi ⊂ U for i = 1, . . . , l is a finite collection of disjoint open sets then

l∑

i=1

Vn(Vi) =
l∑

i=1

H n(f(Vi)) =
l∑

i=1

∫

f(U)

χf(Vi)(x) dx ≤
∫

f(U)

N (f, U) dx = N (f, U)Vn(U).

5)Henceforth Bδ is an arbitrary ball B(z, δ) ⊂ D′ containing y.
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By Proposition 11, the upper derivative V
′
n(y) exists:

U � y 
→ V
′
n(y) = lim

r→0, y∈Br

H n(Vn(Br))

H n(Br)
= lim

r→0, y∈Br

H n(f(Br))

H n(Br)
, (12)

where Br is a radius r ball containing y that is not necessarily the center of the ball.
Proposition 11 yields the inequality

∫

V

V
′
n(y) dy ≤ κVn(V )

for every open set V ⊂ U .

Example 13 (Lebesgue’s Differentiation Theorem). Consider an open set D in Rn and a non-
negative function g ∈ L1,loc(D). Given an open set U ⊂ D, put Φ(U) =

∫

U g(x) dx.
The function Φ is defined on the open sets U ⊂ D, is monotone and countably additive. Its derivative

Φ′(x) exists for H n-almost all x ∈ D and coincides H n-almost everywhere with g(x) [49, 50].

Recall that the function u : D → R belongs to ACL(D), i.e., u ∈ ACL(D), whenever the restriction
u|Q of u : D → R to an arbitrary closed cube Q ⊂ D whose edges are parallel to the coordinate axes is
absolutely continuous on H n−1-almost all segments orthogonal to the facets of this cube. It is known,
see [51] for instance, that every f ∈ W 1

1,loc(D) can be redefined on a zero measure set so that the new

function f̃ will belong to ACL(D), while all its partial derivatives coincide with the generalized derivatives
H n-almost everywhere in D.

Below we apply the following change-of-variables formula for Lebesgue integrals.

Proposition 14 [12, 52]. Suppose that ϕ : D → Rn belongs to W 1
1,loc(D) or ACL(D). Then

(1) there exists a zero measure Borel set Σ ⊂ D such that ϕ : D\Σ → Rn enjoys Luzin’s N -property;
(2) D \ Σ � x 
→ (u ◦ ϕ)(x)| detDϕ(x)| and Rn � y 
→ u(y)N (y, ϕ,D \ Σ) are measurable functions

as soon as so is u : Rn → R;
(3) if A ⊂ D \ Σ is a measurable set then the area formula holds:

∫

A

| detDϕ(x)| dx =

∫

Rn

N (y, ϕ,A) dy;

(4) if u ≥ 0 is a nonnegative function then the integrands in (13) are measurable and the following
change-of-variables formula for Lebesgue integrals holds:

∫

D\Σ
u(ϕ(x))| detDϕ(x)| dx =

∫

Rn

∑

x∈ϕ−1(y)\Σ
u(x) dy; (13)

(5) if one of the functions

D \ Σ � x 
→ (u ◦ ϕ)(x)| detDϕ(x)| and Rn � y 
→ u(y)N (y, ϕ,D \ Σ)

is integrable then so is the other, and
∫

D\Σ
u(ϕ(x))| detDϕ(x)| dx =

∫

Rn

u(y)N (y, ϕ,D \ Σ) dy. (14)

Remark 15. Since H n(Σ) = 0 in (13) and (14), on the left-hand side of these formulas we can
replace integration over D \ Σ by integration over D, so that along with (14) we have

∫

D

u(ϕ(x))| detDϕ(x)| dx =

∫

Rn

u(y)N (y, ϕ,D \ Σ) dy.
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The last formula is proved in [53] by a different method.

Remark 16. Observe that every ϕ ∈ W 1
q,loc(D) for q > n and every homeomorphism ϕ ∈ W 1

n,loc(D)

enjoys Luzin’s N -property; see [54–56].

Definition 17. Consider a homeomorphism ϕ : D → D′ of Euclidean domains in Rn with n ≥ 2.
Example 12 shows that we can express D as the union of three disjoint Borel sets: D = Z∪Σ∪(D\(Z∪Σ)),
where

(1) Z includes the set {x ∈ D : Jϕ(x) = 0} of zeros of the volume derivative and differs from it by
a measure zero set: H n(Z \ {x ∈ D : Jϕ(x) = 0}) = 0,

(2) Σ ⊂ D is a singular set; i.e., ϕ(Σ) is of positive measure;
(3) D \ (Z ∪ Σ) is the set on which ϕ enjoys Luzin’s N -property and 0 < Jϕ(x) < ∞ at each point

of D \ (Z ∪ Σ).
The decomposition of D corresponds to the decomposition of the image

D′ = (D′ \ (Z ′ ∪ Σ′)) ∪ Z ′ ∪ Σ′,

where Z ′ = ϕ(Σ) and Σ′ = ϕ(Z) play the same roles for the inverse homeomorphism ϕ−1 : D′ → D as Z
and Σ do for ϕ; for the details, see [12, § 1].

Moreover, if ϕ : D → D′ belongs to W 1
1,loc(D) or ϕ ∈ ACL(D) then [12, § 1] shows that

H n({x ∈ D : Jϕ(x) = 0}Δ{x ∈ D : detDϕ(x) = 0}) = 0.

Hence, for Sobolev-class mappings we may assume from the outset that Z ⊃ {x ∈ D : detDϕ(x)) = 0}
and H n(Z \ {x ∈ D : detDϕ(x) = 0}) = 0, while detDϕ(x) �= 0 on D \ (Z ∪ Σ).

Below we will use the notation just introduced.

1.1. From a minimal collection of condensers to localization of the distortion function.
In this section we show that the localization of distortion function in Theorem 3 can be obtained from
a tuple consisting of cubical condensers. In other words, we will verify that if (2) is satisfied only for
cubical condensers then claims (1) and (3) of Theorem 3 hold as well. This approach contrasts with the
classical tradition in the theory of quasiconformal mappings which usually considers spherical condensers
as a minimal collection; see [27].

In the following theorem, as the system of open sets Oc(D
′) on which the quasiadditive set function Ψ

is defined we take the minimal system of open sets in D′ (cp. Definition 6) which contains
(1) D′;
(2) every open cube Q with Q ⊂ D′;
(3) the complement Q2 \Q1 for two cubes Q1, Q2 ⊂ D′ with the common center and Q1 ⊂ Q2.
As a bounded quasiadditive set function we consider Φ : Oc(D

′) → [0,∞).

Theorem 18. Given a homeomorphism ϕ : D → D′ of domains D,D′ ⊂ Rn, where n ≥ 2, and a lo-
cally summable weight function ω : D′ → (0,∞), if every cubical condenser E = (Q(y, r), Q(y,R)) ⊂ D′
with the preimage ϕ−1(E) = (ϕ−1(Q(y, r)), ϕ−1(Q(y,R))) in D satisfies

cap
1
q
(

ϕ−1(E);L1
q(D)

) ≤
{

Kp cap
1
p
(

E;L1
p(D

′;ω)
)

, 1 < q = p < ∞,

Ψ
1
σ
q,p(U \ F ) cap

1
p
(

E;L1
p(D

′;ω)
)

, 1 < q < p < ∞,

where Ψq,p is some bounded quasiadditive set function on the system Oc(D
′), then the following hold:

(1) The homeomorphism ϕ : D → D′ belongs to W 1
q,loc(D) and has finite distortion: Dϕ(x) = 0

holds H n-almost everywhere on Z = {x ∈ D | J(x, ϕ) = 0}, and the operator distortion function

D � x 
→ K1,ω
q,p (x, ϕ) =

{ |Dϕ(x)|
| detDϕ(x)|

1
p ω

1
p (ϕ(x))

if detDϕ(x) �= 0,

0 if detDϕ(x) = 0,
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belongs to Lσ(D), where σ is determined from 1
σ = 1

q − 1
p if 1 < q < p < ∞ and σ = ∞ if 1 < q = p < ∞;

moreover,

K1,ω
q,p (x, ϕ) ≤

{

7
n
p nKp

p for 1 < q = p < ∞,

7
n
q nΨ′(ϕ(x))

1
σ for 1 < q < p < ∞

for H n-almost all x ∈ D \ (Z ∪ Σ).
(2) The composition operator ϕ∗ : L1

p(D
′;ω)∩Lipl(D

′) → L1
q(D), where 1 ≤ q ≤ p < ∞, is bounded;

moreover,

‖ϕ∗‖ ≤ ∥∥K1,ω
q,p (·) | Lσ(ϕ−1(A))

∥
∥ ≤

{

7
n
p nKp in the case 1 < q = p < ∞,

7
n
q nΨ(D′)

1
σ in the case 1 < q < p < ∞;

the quasiadditive function

D′ ⊃ A 
→ Ψ̃q,p(A) =
∥
∥K1,ω

q,p (·) | Lσ(ϕ−1(A))
∥
∥σ

satisfies the relations:
(a) Ψ̃q,p(U) ≤ 7

nσ
q nσΨ(U) for every open set U ∈ Oc(D

′),

(b) ‖ϕ∗
A‖ ≤ Ψ

1
σ
q,p(A), where ‖ϕ∗

A‖ is the norm of ϕ∗
A : L1

p(A;ω)∩Lipl(A) → L1
q(ϕ

−1(A)), while A ⊂ D′
is an open set.

(3) Every condenser E = (F1, F0) in D′ with the preimage ϕ−1(E) = (ϕ−1(F1), ϕ
−1(F0)) in D′

satisfies

cap
1
q
(

ϕ−1(E);L1
q(D)

) ≤
{

7
n
p nKp cap

1
p (E;L1

p

(

D′;ω)
)

, 1 < q = p < ∞,

7
n
q nΨ

1
σ
q,p(D′ \ (F0 ∪ F1)) cap

1
p
(

E;L1
p(D

′;ω)
)

, 1 < q < p < ∞.

(4) The classes of homeomorphisms coincide:

QRQq,p(D
′, D;ω) = Qq,p(D

′, D;ω).

(5) The claims of Theorem 18 remain valid in the case 1 = q ≤ p < ∞ and n = 2.

Proof. Fix a cube Q(y, r) � D′ and consider the test function u(z) = (r− |z− y|∞)+. It obviously
satisfies the hypotheses of Lemma 2.3 of [12], which yields u ◦ ϕ ∈ L1

q(ϕ
−1(U)) and

∥
∥u ◦ ϕ | L1

q(ϕ
−1(Q(y, r)))

∥
∥

≤
{

Kp

∥
∥u | L1

p(Q(y, r);ω)
∥
∥ = Kpω(Q(y, r))

1
p if q = p,

Ψ(Q(y, r))
1
σ

∥
∥u | L1

p(Q(y, r);ω)
∥
∥ = Ψ(Q(y, r))

1
σω(Q(y, r))

1
p if q < p,

(15)

where ω(Q(y, r)) =
∫

Q(y,r) ω(z) dz is the weighted measure of the cube Q(y, r).

Fix an arbitrary positive integer 1 ≤ j ≤ n. Define in Q(y, r) the n-dimensional open tetrahedron

TjQ(y, r) = {z ∈ Q(y, r) : yj − r < zj < yj , |zj − yj | > max
l �=j

|zl − yl|}.

On the preimage ϕ−1(TjQ(y, r)) the composition u ◦ ϕ equals r + ϕj(x) − yj . From (15) we deduce that
ϕj ∈ L1

q(ϕ
−1(TjQ(y, r))).

Take z = y − 3
4ej , where ej is the jth vector of the standard basis for Rn. For this choice of z we

have

Q(z, r/4) ⊂ TjQ(y, r) ⊂ Q(y, r) ⊂ Q(z, 7r/4).
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To each point z ∈ W , where W is an arbitrary open set compactly embedded into D′ (the latter is written
as W � D′) associate the cube Q(z, r/4) such that Q(z, 2r) � D′. From (15) we obtain

∥
∥∇ϕj | L1

q(ϕ
−1(Q(z, r/4)))

∥
∥ ≤ ‖u ◦ ϕ | L1

q(ϕ
−1(Q(y, r)))‖

≤
{

Kpω(Q(y, r))
1
p

Ψ(Q(y, r))
1
σω(Q(y, r))

1
p

≤
{

Kpω(Q(z, 7r/4))
1
p if q = p,

Ψ(Q(z, 7r/4))
1
σω(Q(z, 7r/4))

1
p if q < p

(16)

for j = 1, . . . , n. Since each compact set in D′ can be covered by a finitely many cubes of the form
Q(z, r/4), we deduce from (16) that

(1) ϕj ∈ L1
q,loc(D);

(2) ϕ ∈ L1
q,loc(D) because the number 1 ≤ j ≤ n is arbitrary.

Verify also that
(3) ∇ϕj(x) = 0 at H n-almost all points of ϕ−1(E), where E is a measure zero set in D′ for 1 ≤ j ≤ n.
It suffices to see (3) for a measure zero set E ⊂ D′ with diamE < ∞ and dist(E,Rn \ D′) > 0.

There exists a bounded open set V � D′ such that E ⊂ V and H n(V ) < ε for some ε > 0 prescribed
in advance. Applying the Besicovitch Covering Theorem [50] to the open set V , by analogy with [57] we
find some countable collection W = {Qk} of cubes Qk = Qk(zk, rk) such that

(a)
⋃∞

k=1Qk = V ;
(b) for Qk = Qk(zk, rk) ∈ W the condition |zk − Rn \ V |∞ = 32rk holds, where |x − F |∞ =

infy∈F |x− y|∞ is the distance from x to F �= ∅;
(c) we can subdivide the family W into a finite number Nn, depending only on the dimension n, of

subfamilies such that in each of them the cubes are disjoint, and a similar property holds for the family
W ∗ = {8Qk = Qk(zk, 8rk)} of cubes.

In accordance with the last property, we can subdivide the sequence {8Qk} into Nn subfamilies
{8Q1m}∞m=1, . . . , {8QNnm}∞m=1 so that in each subfamily the cubes are disjoint: 8Qkm ∩ 8Qkl = ∅

whenever m �= l for k = 1, . . . , Nn.
Apply the last property to estimate the left-hand side in (16) for q = p:

∫

ϕ−1(V )

|∇ϕj(x)|p dx ≤
∑

k∈N

∫

ϕ−1(Qk(zk,rk))

|∇ϕj(x)|p dx ≤ Kp
p

∑

k∈Nn

∑

m∈N

ω(8Qkm) ≤ NnK
p
pω(V ).

Since ε is an arbitrary positive real, while the Lebesgue integral of a summable function is absolutely
continuous, (3) in the case q = p is established.

In the case q < p we have to apply Hölder’s inequality: From (16) we infer that
∫

ϕ−1(V )

|∇ϕj(x)|q dx ≤
∑

k∈N

∫

ϕ−1(Qk(zk,rk))

|∇ϕj(x)|q dx

≤
∑

k∈Nn

∑

m∈N

Ψ(8Qkm)
q
σω(8Qkm)

q
p ≤

∑

k∈Nn

(
∑

m∈N

Ψ(8Qkm)

) q
σ
(
∑

m∈N

ω(8Qkm)

) q
p

≤
∑

k∈Nn

Ψ(D′)
q
σω(V )

q
p ≤ NnΨ(D′)

q
σω(V )

q
p .

For the reason described above, (3) is also established in the case q < p.
(4) The mapping ϕ has finite distortion; i.e., Dϕ(x) = 0 at H n-almost all points of Z because (14)

yields H n(ϕ(Z \ Σ)) = 0, where Σ ⊂ D is the singularity set of ϕ of measure zero.
(5) From the inclusions Q(z, r) ⊂ TjQ(y, 4r) ⊂ Q(y, 4r) ⊂ Q(z, 7r) and (16), using the change-of-

variables formula (14) and property (3), we deduce that
∫

Q(z,r)

|∇ϕj(ϕ
−1(y))|q

J(ϕ−1(y), ϕ)
χD′\ϕ(Σ)(y) dy ≤

{
Kp

pω(Q(z, 7r)), 1 ≤ q = p < ∞,

Ψ(Q(z, 7r))
q
σω(Q(z, 7r))

q
p , 1 ≤ q < p < ∞,
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where J(x, ϕ) is the Jacobian of ϕ. It remains to divide both sides of the last inequality by H n(Q(z, 7r)),
recall that q

σ + q
p = 1, and pass to the limit as r → 0 by Proposition 11 and the Lebesgue Differentiation

Theorem; see Example 13. In the limit for H n-almost all z ∈ D′ \ϕ(Σ) we obtain the pointwise relation

|∇ϕj(ϕ
−1(z))|

J(ϕ−1(z), ϕ)
1
qω(z)

1
p

≤
{

7
n
pKp

p , 1 ≤ q = p < ∞,

7
n
q Ψ′(z)

1
σ , 1 ≤ q < p < ∞.

Taking the inequality |Dϕ(x)| ≤∑n
j=1 |∇ϕj(x)| into account, we conclude that for q = p the distortion

function D � x 
→ K1,ω
p,p (x, ϕ) (cp. (3)) is bounded by the constant 7

n
p nKp

p , while for q < p we find that
(

|Dϕ(x)|
| detDϕ(x)| 1qω 1

p (ϕ(x))

)σ

| detDϕ(x)| ≤ 7
nσ
q nσΨ′(ϕ(x))| detDϕ(x)|

for almost all points x ∈ D \ (Z ∪ Σ). Integrating both sides over D \ (Z ∪ Σ) and changing the variable
on the right-hand side, by (14) we arrive at

∥
∥K1,ω

q,p (·) | Lσ(D)
∥
∥ ≤ 7

n
q nΨ

1
σ (D′). (17)

Claim (1) of Theorem 18 is proved.
The estimate in (17) means that the hypotheses of claim (3) of Theorem 3 hold. Consequently,

Theorem 3 implies claim (2) of Theorem 18. The implication (2) ⇒ (3) in Theorem 18 is the implication
(1) ⇒ (2) in Theorem 3; for the details see [12].

From claim (3) of Theorem 18 we deduce claim (4).
Claim (5) of Theorem 18 can be justified in the same fashion as in Theorem 9. �

2. Continuous Discrete Open Mappings of Class Qq,p:
Their Properties and Analytical Description

Our next goal is to obtain the properties of f ∈ SRQq,p(D
′, D;ω) and f ∈ RQq,p(D

′, D;ω) which
follow directly from Definition 5.

In order to prove the theorems of this section, we need some auxiliary statements established in the
following subsection.

2.1. Auxiliary relations. Every locally summable function ω : D′ → (0,∞) with D′ ⊂ Rn

determines the weighted measure of measurable sets A ⊂ D′ as

ω(A) =

∫

A

ω(y) dy.

Lemma 19. For 1 ≤ p < ∞ each condenser E = (F,U) in D′ satisfies the upper bound

cap
(

E;L1
p(U ;ω)

) ≤ ω(U \ F )

dist(F, ∂U)p
,

where dist(F, ∂U) is the Euclidean distance between F and the boundary of U .

Proof. Put r = dist(F, ∂U). As an admissible function for the capacity cap
(

E;L1
p(U ;ω)

)

take

u(y) = max

(

0, 1 − dist(y, F )

r

)

.

Indeed, u(y) = 1 at y ∈ F and u(y) = 0 at y /∈ U , while |∇u(y)| ≤ r−1 for almost all y ∈ U .
Consequently,

cap
(

E;L1
p(U ;ω)

) ≤
∫

U\F
|∇u(y)|pω(y) dy ≤ r−pω(U \ F ). �
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Lemma 20. Assume that n − 1 < q < ∞ if n ≥ 3 and 1 ≤ q < ∞ if n = 2. Every condenser
E = (F,U) in D with a connected set F satisfies

capn−1
(

E;L1
q(U)

) ≥ cn−1
1

(diamF )q

H n(U)q−(n−1)
, (18)

where c1 is the constant in Morrey’s inequality (see (19)) which depends only on n and q.

Proof. If n = 2 and q = 1 then (18) is a corollary of the following property: The 1-capacity of
an arbitrary condenser E = (F,U) ⊂ R2 equals cap

(

E;L1
1(U)

)

= infγ H 1(γ), where H 1(γ) stands for

the H 1-measure, or the length, of a smooth closed curve γ ⊂ U the bounded connected component R2 \γ
of whose complement includes F , and the lower bound is taken over all such curves γ [51]. It is obvious
that infγ H 1(γ) ≥ diamF .

Now we apply a modified form of the method of [18, Lemma 5]. Since both sides of the sought
inequality are invariant under motions and have the same homogeneous degrees with respect to homothety,
it suffices to prove the lemma in the case that diamF equals the distance between the two points 0, T ∈ F ,
where T = (0, 0, . . . , 0, 1) lies on the axis xn.

Thus, diamF = |T | = 1. Consequently, each plane PA of dimension n− 1 orthogonal to the axis xn
and passing through some point A = (0, 0, . . . , 0, an) with 0 < an < 1 crosses F at some point xA.

Denote by
BA = B(xA, dist(xA, (R

n\U) ∩ PA))

the maximal (n− 1)-dimensional ball centered at xA lying in U ∩ PA.
Every function u ∈ L1

p(U) ∩ Lipl(U) with u = 1 on F whose support lies in U takes the value 0 on
the sphere

S(xA, dist(xA, (R
n\U) ∩ PA)) ∩ PA.

Therefore, expressing x ∈ PA as x = (ξ, an), use Morrey’s inequality [50, Subsection 4.5.3] for H 1-almost
all an ∈ (0, 1) in the form

∫

PA∩U
|∇u(ξ, an)|q dξ ≥ c1H

n−1(BA)1−
q

n−1 , (19)

where the Hausdorff measure H n−1(BA) coincides with the (n−1)-dimensional Lebesgue measure of BA,
while c1 is a constant depending only on n and q. Applying Hölder’s inequality with exponents q

q−(n−1)

and q
n−1 to the second integral in the first line, we infer that

(diamF )q =

( 1∫

0

dan

)q

=

( 1∫

0

H n−1(BA)
q−(n−1)

q · H n−1(BA)
n−1−q

q dan

)q

≤
( 1∫

0

H n−1(BA) dan

)q−(n−1)(
1∫

0

H n−1(BA)1−
q

n−1 dan

)n−1

(20)

≤ 1

cn−1
1

H n(U)q−(n−1)

(∫

U

|∇u(x)|q dx
)n−1

. (21)

While passing from (20) to (21), we apply the Cavalieri–Lebesgue formula to find an upper bound on the
first integral in (20). This yields (18). �

2.2. Properties of continuous discrete open mappings of class SRQq,p. Our main goal

in this subsection is to obtain the properties of f ∈ SRQq,p(D
′, D;ω) which are straightforward from

Definition 5.
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Theorem 21. Assume that n − 1 < q < ∞ if n ≥ 3 and 1 ≤ q < ∞ if n = 2. Every continuous
discrete open mapping f : D′ → D of class SRQq,p(D

′, D;ω) with q ≤ p < ∞ enjoys the following
properties:

(1) f is differentiable H n-almost everywhere in the domain D′;
(2) f has finite distortion;
(3) we have the pointwise estimate

|Df(y)| ≤ c2

⎧

⎨

⎩

Kn−1
p · | detDf(y)|

p−(n−1)
p ω(y)

n−1
p for q = p,

(

Ψ′
q,p(y)

)n−1
σ | detDf(y)|

q−(n−1)
q ω(y)

n−1
p for q < p

(22)

for H n-almost all y ∈ D′ with the constant c2 = 2nα(n)c
1−n
q

1 , where

α(n) = H n(B(0, 1)) = Γ

(
1

2

)n

/Γ
(n

2
+ 1
)

and 1
σ = 1

q − 1
p , and for every open set U ⊂ D′ the ensuing relations

∫

U

|Df(y)| dy ≤ c3 ·
⎧

⎨

⎩

Kn−1
p · H n(f(U))

p−(n−1)
p · ω(U)

n−1
p for q = p,

Ψq,p(U)
n−1
σ · H n(f(U))

q−(n−1)
q · ω(U)

n−1
p for q < p

(23)

with the constant c3 = c2 · N (f, U)
q−(n−1)

q .

Proof. I. At step 1 we establish that f is differentiable.
Use the scheme of proof in [58] for the case q = p = n, see [59, Lemma 1] for n− 1 < q < p = n and

ω ≡ 1; a different method is obtained in [9, Theorem 2]. Associate to each point y ∈ D′ some spherical

condenser Er = (B(y, r), B(y, 2r)) with B(y, 2r) ⊂ D′. Considering the definition of Qq,p(D
′, D;ω) for

q < p and Lemma 19, we obtain

cap
1
q
(

f(Er);L
1
q(f(B(y, 2r)))

) ≤ Ψq,p(B(y, 2r))
1
σ cap

1
p
(

Er;L
1
p(U ;ω)

)

≤ Ψq,p(B(y, 2r))
1
σ
ω(B(y, 2r))

1
p

r

because the image of a condenser is also a condenser for the class of mappings under consideration; and

for q = p we should write Kp instead of Ψq,p(B(y, 2r))
1
σ .

Using Lemma 20 to estimate capacity on the left,

cap
1
q
(

f(Er);L
1
q(f(B(y, 2r)))

) ≥ c
1
q

1

(diam f(B(y, r)))
1

n−1

H n(f(B(y, 2r)))
q−(n−1)
q(n−1)

,

we infer that

diam f(B(y, r))

r
≤ 2nc

1−n
q

1

(2r)n
Ψq,p(B(y, 2r))

n−1
σ H n(f(B(y, 2r)))

q−(n−1)
q ω(B(y, 2r))

n−1
p .

Letting r → 0, for H n-almost all y ∈ D′ we obtain

lim
z→y

|f(z) − f(y)|
|z − y| ≤ 2nα(n)c

1−n
q

1

(

Ψ′
q,p(y)

)n−1
σ V

′
n(y)

q−(n−1)
q ω(y)

n−1
p , (24)

where the values of V
′
n(y) and Ψ′

q,p(y), appearing in (12) and Proposition 11 part I, are finite H n-
almost everywhere in D′. Since the right-hand side of (24) is finite H n-almost everywhere in D′, by
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Stepanov’s Theorem (see [49, 50] for instance), the mapping f is differentiable H n-almost everywhere
in D′. It is known that at the differentiability points of f the left-hand side of (24) equals |Df(y)|, while

V
′
n(y) = | detDf(y)|; see [49] for instance.

In (24), as well as (26) and the inequality in part II of the proof below, in the case q = p we should

write Kn−1
p instead of (Ψ′

q,p(·))
n−1
σ .

II. Appreciating the above, rearrange (24) as

|Df(y)| ≤ c2(Ψ
′
q,p(y))

n−1
σ | detDf(y)|

q−(n−1)
q ω(y)

n−1
p ,

where c2 = 2nα(n)c
1−n
q

1 . This yields (22). Furthermore, Df(y) = 0 obviously holds H n-almost every-
where on the zero set Z ′ = {y ∈ D′ : detDf(y) = 0} of the Jacobian detDf(y). Consequently, f has
finite distortion.

III. To prove (23), we have to integrate (22) and apply Hölder’s inequality while remembering that
p−(n−1)

p + n−1
p = 1 for q = p and n−1

σ + q−(n−1)
q + n−1

p = 1 for q < p. This yields

∫

U

|Df(y)| dy ≤ c2

(∫

U

| detDf(y)| dy
) q−(n−1)

q
(∫

U

Ψ′
q,p(y) dy

)n−1
σ
(∫

U

ω(y) dy

)n−1
p

.

Since
∫

U | detDf(y)| dy ≤ N (f, U)H n(f(U)) and
∫

U Ψ′
q,p(y) dy ≤ Ψq,p(U) (see Example 12 and Propo-

sition 11), we obtain (23).
Thus, |Df(y)| is locally summable on D′. �
Remark 22. The above proof uses instead of (9) the weaker relations

{

cap
1
p
(

f(Er);L
1
p(D)

) ≤ KpA(r, ω) if q = p,

cap
1
q
(

f(Er);L
1
q(D)

) ≤ Ψq,p(B(y, 2r) \B(y, r))
1
σA(r, ω) if q < p,

where

A(r, ω) =

( ∫

B(y,2r)

|∇u(y)|pω(y) dy

) 1
p

, Er = (B(y, r), B(y, 2r)),

while u(y) = max
(

0, 1 − dist(y,B(y,r))
r

)

is a test function for an upper bound on the capacity cap
1
p (Er);

see Lemma 19.

2.3. Regularity properties of continuous discrete open mappings of class RQq,p. In this
subsection we continue studying the regularity properties of the mappings of class RQq,p and point out
conditions under which f ∈ RQq,p(D

′, D;ω) belongs to a Sobolev class. Observe that the method of
proof generalizes the classical approach and was used several times by many authors in particular cases;
e.g., see the weightless case in [58] for q = p = n, and in [59] for n − 1 < q < p = n, as well as the
weighted case in [60] for q = p = n = 2, in [61] for q = p = n, in [62] for n− 1 < q = p < ∞, and so forth.

Theorem 23. Assume that n − 1 < q < ∞ if n ≥ 3 and 1 ≤ q < ∞ if n = 2. Every continuous
discrete open mapping f : D′ → D in the family RQq,p(D

′, D;ω) with q ≤ p < ∞ enjoys the properties:

(1) f belongs to W 1
1,loc(D

′);
(2) f has finite distortion;
(3) f is differentiable H n-almost everywhere on D′;
(4) f satisfies the estimates in (22) and (23).

Proof. Claims (2)–(4) in case every mapping f ∈ Qq,p(D
′, D;ω) for q ≤ p < ∞, where n− 1 < q <

∞ if n ≥ 3 and 1 ≤ q < ∞ if n = 2, are justified in Theorem 21.
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It remains to justify claim (1). Verify that f ∈ ACL(D′). Using the local summability of the
partial derivatives (see (24)), we obtain the required containment (cp. the equivalent description of
f ∈ W 1

1,loc(D
′) in [51, § 1.1.3, Theorems 1 and 2]).

To prove that f ∈ ACL(D′), take an arbitrary n-dimensional open cube P � D′ with edges parallel
to coordinate axes and verify, for instance, that f is absolutely continuous on H n−1-almost all sections
of P by the straight lines parallel to the axis xj , for j = 1, . . . , n. Since there exists at most countably
many cubes of this form, let us prove the absolute continuity of f on the intersections of H n−1-almost
all curves parallel to the axis xj with D′. Since j = 1, . . . , n is arbitrary, the theorem will be established.

Take the projection Pj of P to the subspace yj = 0 and the projection I of P to the coordinate
axis yj . Then P = Pj × I = {(z, yj) : z ∈ Pj , yj ∈ I}.

The quasiadditive function Ψq,p in Definition 5 of f ∈ RQq,p(D
′, D;ω) induces the bounded quasi-

additive function Ψq,p(A,P ) of open sets A ⊂ O(Pj) with A× I ∈ O(P ) as

O(Pj) � A 
→ Ψq,p(A,P ) = Ψq,p(A× I);

see Definition 6. By Proposition 11, for H n−1-almost all points z ∈ Pj ; i.e., for all points z ∈ Pj \ Σ0,
where Σ0 ⊂ Pj is some set of H n−1-measure zero, the derivative

Ψ′
q,p(z, P ) = lim

r→0

Ψq,p (Bj(z, r), P )

H n−1(Bj(z, r))

exists and is finite, where Bj(z, r)) ⊂ Pj stands for the (n− 1)-dimensional ball of radius r centered at z.

The set function Vn: O(P ) � G 
→ H n(f(G)) is a bounded monotone κ-quasiadditive function
defined on the open sets G ∈ O(P ), and Vn induces the monotone κ-quasiadditive function

O(Pj) � A 
→ Vn(A,P ) = Vn(A× I) = H n(f(A× I))

of the open sets A ⊂ O(Pj) (while A× I ∈ O(P )) with the constant κ = N (f, P ). Proposition 11 yields

V ′
n(z, P ) < ∞ for H n−1-almost all z ∈ Pj such that V ′

n(z, P ) < ∞ at all z ∈ Pj \ Σ′, where Σ′ ⊂ Pj is
some set of H n−1-measure zero.

On the cross-section Iz = {z} × I of the cube, P takes arbitrary disjoint segments Δ1,Δ2, . . . ,Δk

of length b1, b2, . . . , bk respectively with rational endpoints. It is obvious that the collection of all these
segments is countable.

Denote the open set
⋃

y∈Δi
B(y, r) by Ui. Choose r > 0 so that the open sets U1, U2, . . . , Uk are

disjoint and Ui ⊂ P for i = 1, . . . , k.

Consider the condensers Ei = (Δi, Ui). Then Lemma 19 yields

cap
(

Ei;L
1
p(Ui;ω)

) ≤ ω(Ui)

rp
=

∫

Ui

ω(y) dy

rp
, i = 1, . . . , k.

On the other hand, for n− 1 < q < ∞ Lemma 20 implies that

cap
n−1
q
(

f(Ei);L
1
q(Ui)

) ≥ c
n−1
q

1

diam f(Δi)

H n(f(Ui))
q−(n−1)

q

.

From these two inequalities and the condition f ∈ RQq,p(D
′, ω) we infer that

diam f(Δi) ≤ c
1−n
q

1

rn−1
H n(f(Ui))

q−(n−1)
q (Ψq,p (Ui))

n−1
σ ω(Ui)

n−1
p .
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Summing over i = 1, . . . , k, applying Hölder’s inequality, and using the properties of quasiadditive func-
tions, we arrive at

k∑

i=1

diam f(Δi) ≤ c
1−n
q

1

rn−1

( k∑

i=1

H n(f(Ui))

) q−(n−1)
q

( k∑

i=1

Ψq,p(Ui)

)n−1
σ

(
k∑

i=1

ω(Ui)

)n−1
p

≤ c4

(
Vn(Bj(z, r), P )

H n−1(Bj(z, r))

) q−(n−1)
q

(
Ψq,p(Bj(z, r), P )

H n−1(Bj(z, r))

)n−1
σ
(

k∑

i=1
ω(Ui)

H n−1(Bj(z, r))

)n−1
p

, (25)

where c4 = 2n−1α(n− 1)c
1−n
q

1 · N (f, P )
q−(n−1)

q , while α(n− 1) = H n−1(Bj(0, 1)).
Letting r tend to 0, we obtain the following inequality whose validity for H n−1-almost all z ∈ Pj

is guaranteed by the existence of limits in the three expressions in parentheses in (25) for H n−1-almost
all z ∈ Pj :

k∑

i=1

diam f (Δi) ≤ c4(V
′
n(z, P ))

q−(n−1)
q (Ψ′

q,p(z, P ))
n−1
σ

( ∫

k⋃

i=1

Δi

ω(z, yn) dyj

)n−1
p

. (26)

The first quotient in parentheses in (25) has finite upper limit at all z ∈ Pj \Σ′. The second quotient has
finite limit at all z ∈ Pj \Σ0 (see Proposition 11); here H n−1(Σ0) = H n−1(Σ′) = 0. The third expression
in parentheses in (25) also has finite limit for H n−1-almost all z ∈ Pj . In order to verify this, consider
any term in the third expression in parentheses in (26), for instance, with index i; the existence of the
limit for each term implies the same for the sum of finitely many terms. Recall that Ui =

⋃

y∈Δi
B(y, r).

For this reason,
Ui ⊂ (Bj(z, r) × Δi) ∪ (Bj(z, r) × α) ∪ (Bj(z, r) × β), (27)

where α and β in (27) are the length r subintervals of the interval ({z} × I) ∩ Ui complementary to Δi.
Applying Fubini’s Theorem, express the term chosen above as

ω(Ui)

H n−1(Bj(z, r))
=

1

H n−1(Bj(z, r))

∫

Ui

ω(y) dy =

∫

Δi

ω(z, yj) dyj (28)

+
1

H n−1(Bj(z, r))

( ∫

Bj(z,r)

(∫

Δi

ω(w, yj) dyj −
∫

Δi

ω(z, yj) dyj

)

dw

)

+ R(r) (29)

as r → 0; by Fubini’s Theorem, for all z ∈ Pj \ Dj , with H n−1(Dj) = 0, the integral
∫

z×I ω(z, yj) dyj
exists, which at the same points z ∈ Pj ensures that the integral on the right-hand side of (28) is finite.

By the Lebesgue Differentiation Theorem the first expression in (29) vanishes6) for H n−1-almost all
z ∈ Pj ; i.e., for all z ∈ Pj \ Σi outside some set Σi ⊂ Pj of H n−1-measure zero. The remainder R(r)
in (29) is nonnegative and contains two terms that are dominated by the sum

1

H n−1(Bj(z, r))

( ∫

Bj(z,r)

(∫

α

ω(w, yj) dyj +

∫

β

ω(w, yj) dyj

)

dw

)

,

6)Here the Lebesgue Differentiation Theorem is applied in the form

lim
r→0

1

H n−1(Bj(z, r))

∫

Bj(z,r)

∣
∣
∣
∣

∫

Δi

ω(w, yj) dyj −
∫

Δi

ω(z, yj) dyj

∣
∣
∣
∣
dw = 0

for H n−1-almost all z ∈ Pj .
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where α and β are the length r subintervals of the interval ({z} × I) ∩ Ui complementary to Δi. Since
the integral in the inner parentheses vanishes as r → 0, it follows that R(r) = o(1) as r → 0.

Since the collection {Δi} of segments is at most countable, we see that (26) is justified for all
z ∈ Pj \

(

Dj ∪ Σ′ ∪⋃∞
i=0 Σi

)

, where Dj ∪ Σ′ ∪⋃∞
i=0 Σi ⊂ Pj is of H n−1-measure zero.

Moreover, (26) shows that the absolute continuity of f : {z} × I → D for z fixed is guaranteed by
that of the integral

∫

{z}×I ω(z, yj) dyj on the interval I. Consequently, we can extend (26) to every finite,

and consequently every countable, collection of segments {Δi}, not necessarily with rational endpoints.
Since j can be any positive integer from 1 to n, the absolute continuity of f : D′ → D is established.

With (23), this also implies that f ∈ W 1
1,loc(D

′); see the details in [51].7) �

3. New Examples of Homeomorphisms of Class Qq,p

In this section we add to Theorem 9 the new examples of Qq,p(D
′, D;ω)-homeomorphisms and

establish some new properties of the latter.

Example 24. Consider a homeomorphism ϕ : D → D′ from W 1
p,loc(D), where 1 < p < ∞ for n ≥ 3

and 1 ≤ p < ∞ for n = 2, with finite distortion. The inverse homeomorphism f = ϕ−1 : D′ → D belongs
to Qp,p(D

′, D;ω) with the constant Kp = 1 and weight function (30); see below.

In order to verify the validity of Example 24, we establish a few properties of interest in their own
rights.

Theorem 25. Consider a homeomorphism ϕ : D → D′ from W 1
p,loc(D), where 1 ≤ p < ∞, with

finite distortion. Then the weight function defined by the relation

D′ � y 
→ ω(y) =

{ |Dϕ(ϕ−1(y))|p
| detDϕ(ϕ−1(y))| if y ∈ D′ \ (Z ′ ∪ Σ′),

1 otherwise
(30)

is locally summable, ω ∈ L1,loc(D
′), and the composition operator

ϕ∗ : L1
p(D

′;ω) ∩ Lipl(D
′) → L1

p(D), 1 ≤ p < ∞, (31)

is bounded; furthermore ‖ϕ∗‖ ≤ ∥∥K1,ω
p,p (·) | L∞(D)

∥
∥ = 1.

Proof. Take a homeomorphism ϕ : D → D′ from W 1
p,loc(D), where 1 ≤ p < ∞, having finite

distortion. Let us study the conditions on the weight ω : D′ → (0,∞) which ensure that (31) is
a bounded operator.

Suppose that there exists a locally summable weight ω : D′ → (0,∞) such that ϕ induces the bounded
composition operator ϕ∗ : L1

p(D
′;ω) ∩ Lipl(D

′) → L1
p(D), where 1 ≤ p < ∞. Then ϕ : D → D′ satisfies

claims (1) and (3) of Theorem 3, and so the operator distortion function

D � x 
→ K1,ω
p,p (x, ϕ) =

{ |Dϕ(x)|
| detDϕ(x)|

1
p ω

1
p (ϕ(x))

if detDϕ(x) �= 0,

0 if detDϕ(x) = 0

(see (3)) belongs to L∞(D). The estimate ‖ϕ∗‖ ≤ ∥
∥K1,ω

p,p (·) | L∞(D)
∥
∥ follows from (4). The condition

∥
∥K1,ω

p,p (·) | L∞(D)
∥
∥ = 1 guarantees obviously that ‖ϕ∗‖ ≤ 1. In other words, these relations imply the

7)As [51, § 1.1.3, Theorems 1 and 2] shows, a locally summable function u : Ω → R belongs to L1
p(Ω) with p ≥ 1

if and only if u can be changed on a set of H n-measure zero so that the modified function is absolutely continuous
on H n−1-almost all straight lines parallel to each coordinate axis, and has ordinary partial derivatives belonging
to Lp(Ω). Furthermore, the weak gradient ∇u of u in the sense of generalized functions coincides H n-almost
everywhere with the ordinary gradient.
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equalities K1,ω
p,p (x, ϕ) = 0 on Z and K1,ω

p,p (x, ϕ) = 1 for H n-almost all x ∈ D \ Z. Consequently, on
D′ \ (Z ′ ∪ Σ′) we can take as the weight the measurable function

ω(y) =
|Dϕ(ϕ−1(y))|p

| detDϕ(ϕ−1(y))| , (32)

defined for H n-almost all y ∈ D′ \ (Z ′ ∪ Σ′).
By (14),

∫

ϕ(W )\(Z′∪Σ′)

ω(y) dy =

∫

ϕ(W )\(Z′∪Σ′)

|Dϕ(ϕ−1(y))|p
| detDϕ(ϕ−1(y))| dy =

∫

W\(Z∪Σ)

|Dϕ(x)|p dx < ∞

for a compactly embedded domain W � D. Observe that these relations impose no constraints on the
behavior of (31) on Z ′ = ϕ(Σ).

Using the above, define the weight in the case |Z ′| > 0 according to (30). For this choice, the weight
ω : D′ → (0,∞) is locally summable, ω ∈ L1,loc(D

′), while the outer operator distortion function equals

D � x 
→ K1,ω
p,p (x, ϕ) =

{
1 if detDϕ(x) �= 0,

0 otherwise.

Consequently, (3) is met, and therefore so is the equivalent condition (1) of Theorem 3. Moreover, we

have the estimate ‖ϕ∗‖ ≤ ∥∥K1,ω
p,p (·) | L∞(D)

∥
∥ = 1 for the composition operator. �

Theorems 3 and 9 imply the following statement:

Corollary 26. Consider a homeomorphism ϕ : D → D′ from W 1
p,loc(D), where 1 < p < ∞ for

n ≥ 3 and 1 ≤ p < ∞ for n = 2, having finite distortion. Then the inverse mapping f = ϕ−1 belongs to
Qp,p(D

′, D;ω).

Proof. By Theorem 9, f = ϕ−1 belongs Qp,p(D
′, D;ω) for 1 < q. Observe that the proof of the

implication 1 ⇒ 2 in Theorem 3 obtained in [10, 12] for 1 < q works for n = 2 and q = 1 as well. �
Example 24, Theorems 21, 23, and 25, together with Corollary 26 lead to the following statement of

the regularity properties of a homeomorphism whose inverse ϕ : D → D′ belongs to W 1
p,loc(D) and has

finite distortion.

Theorem 27. Consider a homeomorphism ϕ : D → D′ from W 1
p,loc(D), where n − 1 < p < ∞

for n ≥ 3 and 1 ≤ p < ∞ for n = 2, having finite distortion. Then the inverse homeomorphism
f = ϕ−1 : D′ → D enjoys the properties:

(1) f belongs to W 1
1,loc(D

′);
(2) f has finite distortion;
(3) f is differentiable H n-almost everywhere in D′;
(4) for H n-almost everywhere y ∈ D′ we have the estimate

|Df(y)| ≤ 2nα(n)c1| detDf(y)|
p−(n−1)

p ω(y)
n−1
p ; (33)

and also for every open set U ⊂ D′ we have the inequality
∫

U

|Df(y)| dy ≤ c2H
n(f(U))

p−(n−1)
p ω(U)

n−1
p (34)

with the weight function (30) and the constant c2 = 2nα(n)c1, where

α(n) = H n(B(0, 1)) = Γ

(
1

2

)n

/Γ
(n

2
+ 1
)

,

while c1 is the constant in (20).
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Proof. Indeed, Example 24 and Corollary 26 show that under the hypotheses of Theorem 27 the
inverse homeomorphism f = ϕ−1 : D′ → D belongs to Qp,p(D

′, D;ω) with the weight function (30) and
the constant Kp = 1. Thus, Theorem 23 implies claims (1)–(4) of Theorem 27. �

Remark 28. The presented proof of Theorem 27 is new, although some particular situations had
already been considered. Namely, claims (1) and (2) of Theorem 27 were established in [1, Theorems 3.2
and 3.3] for n = 2 and p = 1, and in [2, Theorem 1.2] for n ≥ 3 and p > n− 1; we can extract claim (3)
of Theorem 27 for n ≥ 3 and p = n from the book [6] which includes a comprehensive bibliography. The
method for proving the absolute continuity and differentiability in Theorems 21 and 23 stems essentially
from Menshov [4]; see the exposition of his results in [63].

Using Theorem 27, we verify Theorem 3 in the case 1 = q ≤ p < ∞ and n = 2.

Corollary 29. Suppose that a homeomorphism f : D′ → D of domains D′ and D in R2 belongs to
Qq,p(D

′, D;ω) with 1 = q ≤ p < ∞. Then the inverse mapping ϕ = f−1 : D → D′ enjoys properties (1)
and (3) of Theorem 3.

Proof. By Theorem 23, the homeomorphism f : D′ → D in Qq,p(D
′, D;ω), where 1 ≤ q ≤ p < ∞

and n = 2, belongs to W 1
1,loc(D

′) and has finite distortion. By Theorem 27 applied to the homeomorphism

f : D′ → D from W 1
1,loc(D

′) which has finite distortion (see the definition in (1)), the inverse mapping

ϕ = f−1 : D → D′ belongs to W 1
1,loc(D) and has finite distortion. Now we have to apply to ϕ ∈ W 1

1,loc(D)

the arguments of [12, Lemma 2.5 and Section 2.5] which imply8) that claims (1) and (3) of Theorem 3
are valid for ϕ : D → D′. �

Example 30. Suppose that n − 1 < s < ∞ and consider a homeomorphism f : D′ → D of open
domains D′, D ⊂ Rn, where n ≥ 2, such that

(1) f ∈ W 1
n−1,loc(D

′);
(2) f has finite distortion; i.e., Df(y) = 0 H n-almost everywhere on Z = {y ∈ D′ | detDf(y) = 0};
(3) the outer operator distortion function

D′ � y 
→ K1,1
n−1,s(y, f) =

{ |Df(y)|
| detDf(y)| 1s

if detDf(y) �= 0,

0 if detDf(y) = 0
(35)

belongs to Lσ(D), where σ = (n− 1)p and p = s
s−(n−1) .

Then the inverse homeomorphism ϕ = f−1 : D → D′ enjoys the following properties:
(4) ϕ ∈ W 1

p,loc(D), p = s
s−(n−1) ;

(5) ϕ has finite distortion,
while f : D′ → D

(6) belongs to Qp,p(D
′, D;ω) with the constant Kp = 1 and the weight function ω ∈ L1,loc(D

′) defined
as

ω(y) =

{ | adjDf(y)|p
| detDf(y)|p−1 if y ∈ D′ \ Z ′,

1 otherwise,
(36)

where Z ′ = {y ∈ D′ : Df(y) = 0}.

Proof. It is known (see [20, Theorem 4]) that if a homeomorphism f : D′ → D meets the above-
stated requirements, then the inverse homeomorphism ϕ = f−1 : D → D′ enjoys the following properties:

(4) ϕ ∈ W 1
p,loc(D), p = s

s−(n−1) ;

(5) ϕ has finite distortion.

8)The arguments in the indicated fragments of [12] are applicable to every homeomorphism ϕ : D → D′

from W 1
1,loc(D) having finite distortion and satisfying (2).
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By (35), the function K1,1
n−1,s(y, f), where n− 1 < s < ∞, belongs to Lσ(D′) with σ = (n− 1)p and

p = s
s−(n−1) . Consequently, K1,1

n−1,s(y, f)σ is summable on D′ \ Z ′. Furthermore, it is straightforward

that (n−1)p
s = p− 1, and so the available inequality |Df(y)|n−1 ≥ | adjDf(y)| yields

K1,1
n−1,s(y, f)σ =

(|Df(y)|n−1)p

| detDf(y)| (n−1)p
s

≥ | adjDf(y)|p
| detDf(y)|p−1

for y ∈ D′ \ Z ′. (37)

The summability of the left-hand side of (37) implies that of the right-hand side on D′ \Z ′; consequently,
weight function (36) is locally summable.

Observe that for H n-almost all y ∈ D′ \ Z ′ we have

|Dϕ(f(y))|p
| detDϕ(f(y))| =

| adjDf(y)|p
| detDf(y)|p−1

. (38)

Thus, the distortion function

D � x 
→ K1,ω
p,p (x, ϕ) =

{ |Dϕ(x)|
| detDϕ(x)|

1
p ω

1
p (ϕ(x))

if detDϕ(x) �= 0,

0 if detDϕ(x) = 0
(39)

equals 1 H n-almost everywhere on {x ∈ D : detDϕ(x) �= 0}.
Theorems 3 and 9 show that the homeomorphism ϕ : D → D′ has the inverse f = ϕ−1 : D′ → D

belonging to Qp,p(D
′, D;ω) with the weight function (36). �

Remark 31. Example 30, as well as Corollaries 33 and 34 below, yields the new properties of f
and its inverse. Some result close to Example 30 for s = p = n and the weight function ω(y) =

K1,1
n−1,n(y, f)(n−1)n =

( |Df(y)|n
|detDf(y)|

)n−1
at y ∈ D′ \ Z ′ instead of the right-hand side of (38) is stated in the

language of moduli of families of curves in [64].

Example 32. Suppose that n− 1 < s < ∞ and consider some homeomorphism f : D′ → D of open
domains D′, D ⊂ Rn, where n ≥ 2, such that

(1) f ∈ W 1
n−1,loc(D

′);
(2) f has finite codistortion: adjDf(y) = 0 holds H n-almost everywhere on Z = {y ∈ D′ |

detDf(y) = 0};
(3) the inner operator distortion function

D′ � y 
→ K 1,1
n−1,s(y, f) =

{ | adjDf(y)|
| detDf(y)|n−1

s
if detDf(y) �= 0,

0 if detDf(y) = 0
(40)

belongs to Lp(D
′), where p = s

s−(n−1) and n− 1 < s < ∞.

Then the inverse homeomorphism ϕ = f−1 : D → D′ enjoys the following properties:
(4) ϕ ∈ W 1

p,loc(D), p = s
s−(n−1) ;

(5) ϕ has finite distortion;
while the homeomorphism f : D′ → D is such that

(6) f belongs to Qp,p(D
′, D;ω) with the constant Kp = 1 and weight function (36);

(7) f has finite distortion for n− 1 < s < n + 1
n−2 .

Proof. It is known (see [20, Theorem 3]) that if a homeomorphism f : D′ → D meets the above-
stated requirements then the inverse homeomorphism ϕ = f−1 : D → D′ enjoys the properties

(4) ϕ ∈ W 1
p,loc(D),

(5) ϕ has finite distortion.
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Observe that by (40) the function K 1,1
n−1,s(y, f) belongs to Lp(D

′), where n − 1 < s < ∞. Hence,

K 1,1
n−1,s(y, f)p is summable on D′ \ Z ′. Furthermore, we verify directly that

K 1,1
n−1,s(y, f)p =

(

| adjDf(y)|
| detDf(y)|n−1

s

)p

=
| adjDf(y)|p

| detDf(y)|p−1
for y ∈ D′ \ Z ′. (41)

Consequently, although the premises in Example 32 differ from those in Example 30, we arrive at the
same weight function (36) which is locally summable by (41) and condition (3) of Example 32.

Observe that (38) holds for H n-almost all y ∈ D′ \ Z ′. Therefore, the distortion function D � x 
→
K1,ω

p,p (x, ϕ) defined in (39) equals 1 H n-almost everywhere on {x ∈ D : detDϕ(x) �= 0}. Thus, the

distortion function D � x 
→ K1,ω
p,p (x, ϕ) is well defined and

∥
∥K1,ω

p,p (·, ϕ)
∥
∥ = 1.

By claim (1) of Theorem 3, the mapping ϕ : D → D′ induces the bounded composition operator
ϕ∗ : L1

p(D
′;ω)∩ Lipl(D

′) → L1
q(D). From this we infer that f = ϕ−1 : D′ → D belongs to Qp,p(D

′, D;ω)
with the weight function (36).

The relation n−1 < s < n+ 1
n−2 yields n−1 < p. Consequently, by Theorem 27 the homeomorphism

f : D′ → D has finite distortion.

Claims (6) and (7) are also justified. �

Corollary 33. Every homeomorphism f : D′ → D in Examples 30 and 32 enjoys the following
additional properties:

(1) (9) holds for each condenser E = (F1, F0) in D′;

(2) for n− 1 < s < n+ 1
n−2 the homeomorphism f : D′ → D is differentiable H n-almost everywhere

in D′.

Proof. Claim (1) follows from Remark 10 and (4). Claim (2) follows from Theorem 27 because
n− 1 < s < n + 1

n−2 guarantees that n− 1 < p. �

Corollary 34. Suppose that a homeomorphism f : D → D′ enjoys properties (1)–(3) of Examples 30
and 32. Then

(1) under the condition n − 1 < s < n + 1
n−2 the restriction of the homeomorphism f : U ′ → U ,

where U ′ � D′ is a compactly embedded domain, while U = f(U ′), induces the bounded composition
operator

f∗ : L1
p

p−(n−1)
(U) → L1

1(U
′); (42)

(2) under the condition n ≤ s < n + 1
n−2 the homeomorphism f enjoys Luzin’s N −1-property;

(3) under the condition n ≤ s < n + 1
n−2 the homeomorphism f has nonzero Jacobian H n-almost

everywhere in D′.

Proof. (1): Consider a compactly embedded domain U ′ � D′ and some function u ∈ Lip(U), where
U = f(U ′).

The condition n− 1 < s < n + 1
n−2 yields the inequality n− 1 < p < ∞ for the parameter p. Hence,

by the properties stated in Examples 30 and 32, the inverse homeomorphism ϕ = f−1 : D → D′ satisfies
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the hypotheses of Theorem 27. Applying (33) in the subsequent estimates, we obtain

∫

U ′

|∇(u ◦ f)(y)| dy ≤
∫

U ′

|∇u|(f(y))|Df(y)| dy (43)

≤ c2

∫

U ′

|∇u|(f(y))| detDf(y)|
p−(n−1)

p ω(y)
n−1
p dy

≤ c2

(∫

U ′

(|∇u|(f(y)))
p

p−(n−1) | detDf(y)| dy
) p−(n−1)

p
(∫

U ′

ω(y) dy

)n−1
p

≤ c2

(∫

U ′

ω(y) dy

)n−1
p
(∫

U

|∇u(x)|
p

p−(n−1) dx

) p−(n−1)
p

, (44)

where as in (34) we put c2 = 2nα(n)c1. The inequality between (43) and (44) means that f : U ′ → U
induces the bounded composition operator (42).

(2): The condition n ≤ s < n+ 1
n−2 yields the inequality n− 1 < p ≤ n for the parameter p. By [19,

Theorem 4], the homeomorphism f enjoys Luzin’s N −1-property. For the reader’s convenience, let us
state this here:

Proposition 35 [19, Theorem 4]. If a measurable mapping ϕ : D → D′ induces the bounded
composition operator

ϕ∗ : L1
p

(

D′) ∩ Lipl(D
′) → L1

q(D), 1 ≤ q ≤ p ≤ n,

then f enjoys Luzin’s N −1-property.

(3) From [19, Corollary 4] we deduce that the Jacobian of f is nonzero H n-almost everywhere in U ′;
we deduce this property from property (2) of the corollary using the change-of-variables formula (13).
Since U ′ ⊂ D′ is an arbitrary domain, Corollary 34 is justified. �

Remark 36. The properties of the homeomorphism f and its inverse which are stated in Example 32
and Corollaries 33 and 34 are new with the exception of the differentiability of f in Example 32 for s = n
and n ≥ 3; the case s = n is considered in [65].

4. Regularity of Inverse Homeomorphisms
to Sobolev Mappings on a Carnot Group

In this section we generalize Propositions 1 and 2 to homeomorphisms of Carnot groups. The method
for proving the ACL-property of quasiconformal mappings on Heisenberg groups was developed in [66, 67]
and differs substantially in the details from the classical one available in Euclidean space. This method
was later applied to prove the ACL-property of more complicated analytical objects; see [18] for instance
among others.

Below we adapt our new proof of Propositions 1 and 2 to demonstrate the validity of their gener-
alizations to Carnot groups. Essentially, we show that on Carnot groups we can successfully apply the
arguments stemming from the classical article by Menshov [68].

4.1. Definitions of the main structures on Carnot groups.

4.1.1. A Carnot group [69–72] is a connected simply-connected nilpotent Lie group G whose Lie
algebra G decomposes as the direct sum V1 ⊕ · · · ⊕ Vm of vector spaces so that [V1, Vk] = Vk+1 for
1 ≤ k ≤ m− 1 and [V1, Vm] = {0}, while dimV1 ≥ 2. Below we use the notation x · y for the product of
two elements x and y of a group G and e for the neutral element of the group. The subspace V1 ⊂ G is
called horizontal.
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4.1.2. The Lie algebra of a Carnot group and the exponential mapping. Take left-
invariant vector fields X11, . . . , X1n1 constituting a basis for V1. Since they generate G , for each i with
1 < i ≤ m we can choose a basis Xij for 1 ≤ j ≤ ni = dimVi in Vi consisting of order i− 1 commutators
of the basis fields X1k ∈ V1. Since G is nilpotent, we can identify each element x ∈ G with a point of the
space Rn1+···+nm via the exponential mapping:

x = exp
( ∑

1≤i≤m
1≤j≤ni

xijXij

)

.

The diffeomorphism exp : G → G provides a global coordinate system: each element x ∈ G corresponds
to a unique tuple of numbers {xij} ∈ RN , where N = n1 + · · · + nm. Moreover, it is convenient to
identify the elements of G with the points in RN so that the exponential mapping exp : G → G is the
identity [71]. The latter means that the elements of the algebra G and the group G are the same points
in RN subjected to the operations depending on the choice of structure. With this choice of a coordinate
system the neutral element e of the group is 0, while the inverse x−1 to x ∈ G is −x.

The dilations δt defined as x 
→ δtx = (tixij)1≤i≤m, 1≤j≤ni are automorphisms of both the algebra G
and the group G for each t > 0.

4.1.3. Example. The Euclidean space Rn with its standard structure is an example of an abelian
group: The vector fields ∂

∂xi
, i = 1, . . . , n, lack nontrivial commutation relations and constitute a basis

for the corresponding Lie algebra.
The Heisenberg group Hn is an example of a nonabelian Carnot group. The Lie algebra of Hn has

dimension 2n + 1. The vector fields

Xi =
∂

∂xi
+ 2yi

∂

∂t
, Yi =

∂

∂yi
− 2xi

∂

∂t
, T =

∂

∂t
, i = 1, . . . , n,

constitute a basis for the Heisenberg algebra; here we identify the Heisenberg group Hn with the space
R2n+1 = {(x, y, t) : x, y,∈ Rn, t ∈ R}. The only nontrivial commutation relations are [Xi, Yi] = −4T for
i = 1, . . . , n.

Thus, V = V1⊕V2, where V1 = span {X1, . . . , Xn, Y1, . . . , Yn} and V2 = span{T} are one-dimensional
vector subspaces. The image exp(V2) is the center of Hn. The group operation is defined as

(x, y, t) · (x′, y′, t′) = (x + x′, y + y′, t + t′ + 2〈y, x′〉 − 2〈x, y′〉).
4.1.4. The metric structures on Carnot groups. A homogeneous norm [70, 71] on a group G

is a continuous function ρ : G → [0,∞) with the following properties:
(a) ρ(x) = 0 if and only if x = e;
(b) ρ(x) = ρ

(

x−1
)

and ρ (δt(x)) = tρ(x);
(c) there exists a constant C > 0 such that ρ (x · y) ≤ c (ρ (x) + ρ (y)) for all x, y ∈ G.
Naturally, the homogeneous norm is not uniquely determined; however, two arbitrary homogeneous

norms ρ1 and ρ2 are equivalent [70] to each other: there exist two reals α, β ∈ (0,∞) such that α ≤
ρ1(x)/ρ2(x) ≤ β independently of x ∈ G\{e}.

A homogeneous norm determines a homogeneous quasimetric: for two points x, y ∈ G put ρ(x, y) =
ρ(x−1y). The quasimetric enjoys the following properties implied by the properties (a)–(c) of homoge-
neous norms:

(a1) ρ(x, y) ≥ 0 and ρ(x, y) = 0 if and only if x = y;
(b1) ρ(x, y) = ρ(y, x) and ρ(δtx, δty) = tρ(x, y);
(c1) the generalized triangle inequality ρ (x, y) ≤ C (ρ (x, z) + ρ (z, y)) holds for all x, y, z ∈ G with

the constant C > 0 from property (c) above.
The equivalence of the homogeneous norms ρ1 and ρ2 yields the equivalence of metrics: αρ2(x, y) ≤

ρ1(x, y) ≤ βρ2(x, y) for all x, y ∈ G.
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Given a metric ρ(x, y), we define the spheres Sρ(x, t) = {y ∈ G : ρ(x, y) = t} and the balls Bρ(x, t) =
{y ∈ G : ρ(x, y) < t}; furthermore, the spheres are closed and the balls are open in the topology of G.

Now we fix the homogeneous norm of x = (x1; . . . ;xi; . . . ;xm) ∈ RN with xi = (xi1, . . . , xini) ∈ Vi,
defined as

ρ(x) = max(|x1|, |x2| 12 , . . . , |xm| 1
m ), (45)

where |xi| =
(

x2i1 + · · · + x2ini

) 1
2 for xi ∈ Vi, and i = 1, . . . ,m.

Assume that the Lie algebra G is equipped with an inner product with respect to which the basis
left-invariant vector fields {Xij} for 1 ≤ i ≤ m and 1 ≤ j ≤ ni are orthonormal.

The Carnot–Carathéodory distance d(x, y) between two points x, y ∈ G is the greatest lower bound
of the lengths of all horizontal curves with endpoints x and y, where the length of a tangent vector is
measured by the chosen Riemannian metric on G, while a horizontal curve is a piecewise smooth path
whose tangent vector belongs to V1. We can show that d(x, y) is always a finite left-invariant metric
with respect to which the automorphism group δt is the group of dilations with the coefficient t, namely,
d (δtx, δty) = td (x, y) [69, 70]. By definition, we put d(x) = d(0, x).

We can show that d(x) is a homogeneous norm; therefore, the distances d(x, y) and ρ(x, y) are
equivalent. Denote the sphere and ball of radius t ≥ 0 in the Carnot–Carathéodory metric by Sc(0, t)
and Bc(0, t) respectively.

The equivalence of the metric functions d(x, y) and ρ(x, y) leads to the property that the identity
mapping between the metric spaces (G, d(·, ·)) and (G, ρ(·, ·)) is a quasi-isometry.

4.1.5. Measures on Carnot groups. Fix the bi-invariant Haar measure on G which is obtained by
transferring the Lebesgue measure from the Lie algebra G onto the group G via the exponential mapping;
i.e., the Haar measure of a measurable set A ⊂ G equals the Lebesgue measure of exp−1(A) in G ; see [70,
Proposition 1.2]. Normalize the Haar measure so that the Lebesgue measure of the ball Bc(0, 1) equals 1.
Observe that we can choose the normalizing factor in the definition of the Hausdorff measure H N (A)
of a measurable set A in RN with the Euclidean metric so that the Hausdorff measure H N (A) equals
the Lebesgue measure of A. Using that, when we speak below about the Lebesgue measure of some set
A ⊂ G, we mean the Hausdorff measure H N (A).

This yields the relation H N (δtA) = tνH N (A) for each measurable set A ⊂ G, where the number
ν =

∑m
i=1 ini is called the homogeneous dimension of G.

By analogy with the Hausdorff measure on Rn (see Section 1), consider the Hausdorff measure on
the metric space (G, d).

Given k ≥ 0 and δ ∈ (0,∞], as well as A ⊂ G, define

H k
δ (A) =

ωk

2k
inf
{∑

i∈N

(diamAi)
k : diamAi < δ,A ⊂

⋃

i∈N

Ai

}

,

where ωk is a normalizing factor and diamAi = sup{d(x, y) : x, y ∈ Ai}, while the infimum is taken over
all countable coverings {Ai} of A. If A cannot be covered by a countable collection of sets of these sizes
then we put H k

δ (A) = ∞. The limit H k(A) = limδ→0 H k
δ (A) exists and is called the k-dimensional

Hausdorff measure of A on (G, d).
Choose the normalizing factor ων in the definition of Hausdorff measure so that H ν(Bc(0, 1)) = 1,

where Bc(0, 1) is a ball in the Carnot–Carathéodory metric. Then H ν(Bc(0, r)) = rν . Moreover, if
E ⊂ G is a measurable set then H ν(δtE) = tνH ν(E). Observe that the homogeneous dimension ν of G
equals the Hausdorff dimension of (G, d).

Owing to the appropriate normalizing factors, the ν-dimensional Hausdorff measure H ν(A) of each
measurable set A ⊂ G equals the Lebesgue measure H N (A) of A.

4.1.6. Horizontal foliations on Carnot groups. Fix 1 ≤ j ≤ n1 and consider a family Γj of
curves amounting to a smooth foliation of an open set A ⊂ G. The leaves γ ∈ Γj are the integral curves
of the horizontal vector field X1j ∈ V1. If we denote the flow corresponding to this field by gs then the
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leaf assumes the form γ(s) = gs(p) = p exp sX1j , where p lies on a surface P transversal to the vector
field X1j , while the parameter s lies in some interval I ⊂ R.

Assume that the foliation Γj of A is equipped with a measure dγj satisfying

c7r
ν−1 ≤

∫

γ∈Γj , γj∩Bc(x,r) �=∅

dγ ≤ c8r
ν−1 (46)

for sufficiently small balls Bc(x, r) ⊂ G with constants c7 and c8 independent of Bc(x, r). For the foliation
determined by the vector field X1j ∈ V1 we can obtain the measure dγj as the contraction i(X1j) of X1j

with the bi-invariant volume form dx; see [67].9)

Horizontal foliations on Carnot groups are convenient for defining absolutely continuous functions (or
mappings) on Carnot groups: for these, the analog of the expression “a mapping is absolutely continuous
on almost all lines parallel to coordinate axes,” available in the Euclidean spaces, is the expression
“a mapping is absolutely continuous on dγj-almost all lines of the horizontal foliation Γj for 1 ≤ j ≤ n1.”

4.1.7. Differentiability on Carnot groups. Consider two Carnot groups G and G̃, as well as

a domain D in G. A mapping ϕ : D → G̃ is called P-differentiable [69] at x ∈ D whenever there exists

a homomorphism L : G → G̃ of Carnot groups such that L(expV1) ⊂ exp Ṽ1 and the “divided difference”

δ̃−1
t (ϕ(x)−1ϕ(xδtu)) converges to L(u) (47)

as t → 0+ uniformly in u ∈ Bc(0, 1). Here δ̃t is a one-parameter group of dilations on G̃, while Ṽ1 is

a horizontal subspace of the Lie algebra G̃ of G̃.

Pansu proved in [69] that every Lipschitz mapping ϕ : D → G̃ defined on an open set D is P-
differentiable H ν-almost everywhere in D.

Specifying the convergence in (47) to other topologies, we arrive at the distinct concepts of differentia-
bility. For instance, the convergence in measure on the ball Bc(0, 1) leads to the concept of approximative
differentiability (see [73]), while convergence in the Sobolev space topology leads to differentiability in
the Sobolev space topology (see [56]).

4.2. Sobolev classes on Carnot groups. Suppose that D is a domain in G. A locally summable
function f : D → R belongs to the Sobolev class L1

p(D) with p ∈ [1,∞] whenever the generalized

derivatives X1jf for j = 1, . . . , n along the vector fields X1j lie in Lp(D). We endow L1
p(D), for p ∈ [1,∞],

with the seminorm
∥
∥f | L1

p(D)
∥
∥ =

(∫

D

|∇L f |p(x) dH ν(x)

) 1
p

;

the vector ∇L f(x) = (X11f(x), . . . , X1n1f(x)) ∈ V1 is called the subgradient of f .
Given two Carnot groups G and G′, as well as a domain D in G, we call a mapping ϕ : D → G′

absolutely continuous on lines and write ϕ ∈ ACL(D) whenever for every domain U with U ⊂ D and the
foliation Γj determined by the left-invariant vector field X1j for j = 1, . . . , n1, the mapping ϕ is absolutely
continuous on γ ∩ U with respect to the Hausdorff H 1-measure for dγj-almost all curves γ ∈ Γj . For
a mapping of the class, the derivatives X1jϕ along the vector fields X1j , for j = 1, . . . , n1, such that
X1jϕ(x) ∈ V1(x) exist H ν-almost everywhere in D [69, Proposition 4.1].

The matrix Dhϕ(x) = (X1iϕ1j(x)) with i = 1, . . . , n1 and j = 1, . . . , n′
1 defined almost everywhere

in D determines the linear operator Dhϕ(x) : V1 → V ′
1 , where dimV ′

1 = n′
1, from the horizontal space V1

into the horizontal space V ′
1 of G′, called the horizontal differential of ϕ at x, and |Dhϕ(x)| stands for

the norm of Dhϕ(x).

9)If dx is a volume form on G of degree N then i(X1j) is a form of degree N − 1, which at the smooth vector
fields Y1, Y2, . . . , YN−1 on G takes the value i(X1j)(Y1, Y2, . . . , YN−1) = dx(X1j , Y1, Y2, . . . , YN−1).
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The algebraical-analytical specificity of a Carnot group is reflected in the fact that the horizontal
differential Dhϕ(x) : V1 → V ′

1 induces [73, Theorem 1.2] the homomorphism Dϕ(x) : G → G′ of Carnot
groups called the P-differential (see Subsection 4.1.7); moreover, their norms can be estimated in terms
of each other: |Dhϕ(x)| ≤ |Dϕ(x)| ≤ C|Dhϕ(x)|, where C depends only on the algebraical structure of G.
It is known [73, Theorem 1.2] that for almost all x ∈ D the homomorphism Dϕ(x) is an approximative
differential of ϕ : D → G′ provided that ϕ ∈ W 1

1,loc(D).

The mapping ϕ : D → G′ belong to the Sobolev class W 1
p,loc(D) with p ∈ [1,∞) whenever ϕ ∈

ACL(D) and the quantity

‖ϕ | W 1
p (U)‖ = ‖ρ(ϕ(·)) | Lp(U)‖ +

(∫

U

|Dhϕ(x)|p dH ν(x)

) 1
p

is finite on each domain U ⊂ D with U ⊂ D. As regards the descriptions of Sobolev-class mappings
equivalent to the above, see [73].

4.3. Change of variables for mappings of ACL-classes on Carnot groups. Consider the
coinciding groups G and G′ and some mapping ϕ : D → G, where D ⊂ G, that belongs to W 1

p,loc(D) with

p ∈ [1,∞).
As in Rn, the determinant detDϕ(x) of the matrix of the homomorphism Dϕ(x) is called the Jacobian

of ϕ at x. The geometric meaning of the Jacobian is analogous to (11): If ϕ : D → D′, where D,D′ ⊂ G,
is a homeomorphism of a Sobolev class then

D � x 
→ lim
r→0

H ν(ϕ(Bc(x, r)))

H ν(Bc(x, r))
= lim

r→0

H N (ϕ(Bc(x, r)))

H N (Bc(x, r))
= | detDϕ(x)| (48)

for H ν-almost all x ∈ D. We can obtain (48) using the change-of-variables formula (50) presented below
and the Lebesgue Differentiation Theorem on Carnot groups; see [47, Corollary 3] for instance.

Definition 37. Given a mapping ϕ : D → G on a Carnot group belonging to W 1
p,loc(D), define the

Borel zero set Z = {x ∈ D : detDϕ(x) = 0} of the Jacobian and the singularity set

Σ = D \ {x ∈ D : the approximative differential Dϕ(x) is defined} (49)

of measure zero, which we may assume to be a Borel set. It is obvious that Z ∩ Σ = ∅.
By analogy with Definition 17, introduce the sets Z ′ = ϕ(Σ) and Σ′ = ϕ(Z).

We can prove the change-of-variables formula for Lebesgue integrals on Carnot groups by repeating
verbatim the arguments in the proof of Proposition 15 of [52] with the only difference that instead of the
results of [49] which are used in this proof we should apply the corresponding theorems of [73].

Let us recall here just one simple formula [73, Corollary 5.1] useful below.

Proposition 38. If a homeomorphism ϕ : D → D′, where D,D′ ⊂ G, belongs to W 1
1,loc(D), or

ACL(D), then outside the measure zero Borel set Σ ⊂ D (see (49)) the mapping ϕ : D \ Σ → G enjoys
Luzin’s N -property, and every integrable function u : D′ → R satisfies

∫

D

u(ϕ(x))| detDϕ(x)| dH ν(x) =

∫

D′\Z′

u(y) dH ν(y), where Z ′ = ϕ(Σ). (50)

4.4. Regularity properties of Sobolev-class homeomorphisms on Carnot groups. Say
that a mapping ϕ : D → G on a Carnot group belonging to W 1

1,loc(D), or ACL(D), has finite distortion

whenever Dϕ(x) = 0 almost everywhere on the zero set Z = {x ∈ D : detDϕ(x) = 0} of the Jacobian.

4.4.1. A Sobolev-class homeomorphism on a Carnot group as a composition operator.

The next statement generalizes Proposition 1 to Carnot groups.
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Proposition 39. Consider two domains D and D′ on a Carnot group G and a homeomorphism
ϕ : D → D′ ∈ W 1

p,loc(D), where 1 ≤ p < ∞, having finite distortion. Then the weight function defined as

D′ � y 
→ ω(y) =

{ |Dϕ(ϕ−1(y))|p
| detDϕ(ϕ−1(y))| if y ∈ D′ \ (Z ′ ∪ Σ′),

1 otherwise
(51)

is locally summable, ω ∈ L1,loc(D
′), and Σ′ = ϕ(z). The composition operator

ϕ∗ : L1
p(D

′;ω) ∩ Lipl(D
′) → L1

p(D), 1 ≤ p < ∞, (52)

is bounded and, furthermore, ‖ϕ∗‖ ≤ ∥
∥K1,ω

p,p (·) | L∞(D)
∥
∥ = 1, where the operator distortion function

K1,ω
p,p (·) is defined in (53).

Proof. Verify that the weight function (51) is locally summable, the operator distortion function

K1,ω
p,p (·) (see (53)) lies in L∞(D), and operator (52) is bounded.

Formula (50) yields

∫

ϕ(W )\(Z′∪Σ′)

ω(y) dH ν(y) =

∫

ϕ(W )\(Z′∪Σ′)

|Dϕ(ϕ−1(y))|p
| detDϕ(ϕ−1(y))| dH

ν(y)

=

∫

W\(Z∪Σ)

|Dϕ(x)|p dH ν(x) < ∞

for a compactly embedded domain W � D. Thus, ω ∈ L1,loc(D
′).

The operator distortion function

D � x 
→ K1,ω
p,p (x, ϕ) =

{ |Dϕ(x)|
| detDϕ(x)|

1
p ω

1
p (ϕ(x))

if detDϕ(x) �= 0,

0 if detDϕ(x) = 0
(53)

lies in L∞(D). Moreover,
∥
∥K1,ω

p,p (·) | L∞(D)
∥
∥ = 1.

To estimate the norm of (52), apply the change-of-variables formula (50) (see the integral in (54)
below):

∥
∥u ◦ ϕ | L1

p(D)
∥
∥p ≤

∫

D

|∇L (u ◦ ϕ)(x)|p dH ν(x)

≤
∫

D

|∇Lu(ϕ(x))|p |Dϕ(x)|p
| detDϕ(x)| | detDϕ(x)| dH ν(x) (54)

≤
∫

D′

|∇Lu(y)|p |Dϕ(ϕ−1(y))|p
| detDϕ(ϕ−1(y))|ω(y)

ω(y) dH ν(y)

≤ ∥∥K1,ω
p,p (·) | L∞(D)

∥
∥p · ∥∥u | L1

p(D
′;ω)

∥
∥p, (55)

valid for every u ∈ L1
p(D

′;ω) ∩ Lipl(D
′). Hence, ‖ϕ∗‖ ≤ ∥∥K1,ω

p,p (·) | L∞(D)
∥
∥ = 1. �

4.4.2. Sobolev-class homeomorphisms on Carnot groups and the regularity of their

inverses. The next statement generalizes Proposition 2 to Carnot groups.

Proposition 40. Consider two domains D and D′ on a Carnot group G, and a homeomorphism
ϕ : D → D′ ∈ W 1

p,loc(D), where ν − 1 < p < ∞, with finite distortion.

Then the inverse homeomorphism f = ϕ−1 : D′ → D enjoys the following properties:
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(1) f is differentiable H ν-almost everywhere in the domain D′;
(2) f has finite distortion;
(3) for H ν-almost all y ∈ D′ we have

|Df(y)| ≤ c9| detDf(y)|
p−(ν−1)

p ω(y)
ν−1
p ; (56)

(4) for every open set U ⊂ D′ we have

∫

U

|Df(y)| dH ν(y) ≤ c9H
ν(f(U))

p−(n−1)
p · ω(U)

ν−1
p (57)

with the weight function (51) and constant c9 = 2ν
(

1
c10

) ν−1
p , where the last equality is guaranteed by the

normalization H ν(B(0, r)) = rν and c10 is defined in (59).
(5) f is in W 1

1,loc(D
′).

We can prove Proposition 40 following the scheme of the proof of Theorems 21 and 23. Below we
present the main arguments of the proof of Proposition 40, emphasizing the features of the geometry of
Carnot groups.

4.4.3. Capacity estimates on Carnot groups. The proof of Proposition 40 rests on estimates
for the capacity of two condensers on a Carnot group similar to those in Subsection 2.1.

A continuous function u : D → R from W 1
1,loc(D) is called admissible for a condenser E = (F,U)

whenever u ≡ 1 on F and u ≡ 0 outside U . Denote the collection of admissible functions for E = (F,U)
by A (E).

Let us generalize the concept of capacity which was defined in (6) for Euclidean space to Carnot
groups.

Define the capacity of a condenser E = (F,U) in L1
q(D), where q ∈ [1,∞), on a Carnot group as

cap
(

E;L1
q(D)

)

= inf
u∈A (E)∩L1

q(D)

∥
∥u | L1

q(D)
∥
∥q,

where the infimum is taken over all functions in A (E) ∩ L1
q(D).

The weight functions, the weighted Sobolev space L1
p(D

′;ω), and the space of locally Lipschitz
functions Lipl(D

′) on a domain D′ of the metric space (G, d) are defined by analogy with the Euclidean
space Rn; see (5).

The weighted capacity of a condenser E = (F,U) ⊂ D′ in L1
p(D

′;ω) on a Carnot group is

cap
(

E;L1
p(D

′;ω)
)

= inf
u∈A (E)∩Lipl(D′)

∥
∥u | L1

p(D
′;ω)

∥
∥p,

where the infimum is taken over all u ∈ A (E) ∩ Lipl(D
′).

The distance between two nonempty sets A1, A2 ⊂ G in a Carnot group equals dist(A1, A2) =
inf{dc(x, y) : x ∈ A1, y ∈ A2}.

Below we will use the notation ω(E) =
∫

E ω(y) dH ν(y) for a measurable set E ⊂ G.

Lemma 41. For 1 ≤ p < ∞ the weighted capacity of each condenser E = (F,U) in D′ satisfies the
upper bound

cap
(

E;L1
p(U ;ω)

) ≤ ω(U \ F )

dist(F, ∂U)p
. (58)

Proof. Demonstration of this property is similar to the proof of Lemma 19 with the only difference
that instead of the Euclidean distance we have to use the Carnot–Carathéodory distance.
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Lemma 42 [18, Lemma 5]. Assume that ν − 1 < q < ∞. Each condenser E = (F,U) in D with
a connected set F satisfies

capν−1
(

E;L1
q(U)

) ≥ cν−1
10

(diamF )q

H ν(U)q−(ν−1)
, (59)

where c10 is a constant depending only on q and the geometry of the group.

4.4.4. Proof of Proposition 40. I. At this step we will establish the differentiability of f . To
this end, use the scheme of proof of Theorem 21. Associate to each point y ∈ D′ some spherical condenser
Er = (Bc(y, r), Bc(y, 2r)) with Bc(y, 2r) ⊂ D′; i.e., a condenser whose boundary consists of two connected
components which are concentric spheres. With the norm ‖ϕ∗‖ ≤ 1, we have

cap
(

f(Er);L
1
p(f(Bc(y, 2r)))

) ≤ cap
(

Er;L
1
p(U ;ω)

) ≤ ω(Bc(y, 2r))

rp
.

To estimate capacity on the left-hand side, use (59) with q = p,

c10
(diam f(Bc(y, r)))

p
ν−1

H ν(f(Bc(y, 2r)))
p−(ν−1)

ν−1

≤ cap
(

f(Er);L
1
p(f(Bc(y, 2r)))

)

,

and infer that

diam f(B(y, r))

r
≤ 2νc

1−ν
p

10

(2r)ν
H ν(f(B(y, 2r)))

p−(ν−1)
p ω(B(y, 2r))

ν−1
p

= 2νc
1−ν
p

10

(
H ν(f(B(y, 2r)))

H ν(B(y, 2r))

) p−(ν−1)
p

(
ω(B(y, 2r)

H ν(B(y, 2r))

) ν−1
p

.

Letting r tend to 0, for H ν-almost all y ∈ D′ we obtain

lim
z→y

d(f(z), f(y))

d(z, y)
≤ 2ν

(
1

c10

) ν−1
p

V ′
ν (y)

p−(ν−1)
p ω(y)

ν−1
p , (60)

where the value V ′
ν (y) = limr→0

H ν(f(B(y,r)))
H ν(B(y,r)) , equal to the volume derivative, is finite H ν-almost ev-

erywhere in D′; see (48). The Lebesgue Differentiation Theorem yields limr→0
ω(B(y,2r)

H ν(B(y,2r)) = ω(y) for

H ν-almost all y ∈ D′; for instance, see [72, Chapter 1, § 3.1, Corollary; 46; 47, Corollary 3].
Since the right-hand side of (60) is finite H ν-almost everywhere in D′ by a Stepanov-type theorem

on Carnot groups (see [73, Theorem 3.1]), f is differentiable H ν-almost everywhere in D′. It is known
that at the differentiability points of f the left-hand side of (60) equals |Df(y)| (see [73, Corollary 2.1]
for instance), while V ′

ν (y) = | detDf(y)| (cp. (48)).

II, III. Appreciating the above, rearrange (60) as

|Df(y)| ≤ c9| detDf(y)|
p−(ν−1)

p ω(y)
ν−1
p ,

where c9 = 2ν
(

1
c10

) ν−1
p . This yields the pointwise estimate (56). Then the following obviously holds:

Df(y) = 0 on the zero set Z ′ = {y ∈ D′ : detDf(y) = 0} of the Jacobian detDf(y) everywhere outside
a set of H ν-measure zero. Thus, f has finite distortion.

IV. To justify (57), we have to integrate (56) and apply Hölder’s inequality, remembering that
p−(ν−1)

p + ν−1
p = 1:

∫

U

|Df(y)| dH ν(y) ≤ c9

(∫

U

| detDf(y)| dH ν(y)

) p−(ν−1)
p

(∫

U

ω(y) dH ν(y)

) ν−1
p

.
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Since
∫

U | detDf(y)| dH ν(y) ≤ H ν(f(U)) (see (50)), we arrive at (57). Thus, |Df(y)| is locally
summable on D′.

V. It remains to prove property (5). To this end, it suffices to verify that f ∈ ACL(D′). Since the
horizontal derivatives are locally summable (cf. (57)), the claim will follow. See [73, Proposition 4.2] for
an equivalent description of f ∈ W 1

1,loc(D
′) on Carnot groups.

Step 1. Recall that Bρ(y, t) stands for the radius t ball in the metric space (G, ρ) which is centered
at y; see (45).

To show that f ∈ ACL(D′), fix 1 ≤ j ≤ n. For some number10) M ∈ (0,∞), define the set

Pj0(0, t) = {y ∈ Bρ(0, t) : yj = 0}, t ∈ (0,M),

Pj(0, t) = {z = y exp yjX1j : y ∈ Pj0(0, t), |yj | < t, }, t ∈ (0,M),

Pj(w, t) = wPj(0, t) ⊂ D′ for w ∈ D′ and t ∈ (0,M). (61)

Observe that Pj(0, t) is a ball in the metric ρj(x, y) defined as follows: y ∈ Pj(0, t) if and only if ρj(y) < t,
where the homogeneous norm ρj is defined by the condition

G � y 
→ ρj(y) = max({ρ(y) : yj = 0}, |yj |) (62)

on the Lie algebra G and carried over to the group by the global coordinate system exp(y) = exp(
∑

yikXij)·
exp(yjX1j), where the ranges of summation are 1 ≤ i ≤ m and 1 ≤ k ≤ n1 with k �= j for i = 1 and
1 ≤ k ≤ ni for i ≥ 2. Consequently, the quasimetric ρj(x, y) is equivalent in the sense of Subsection 4.1.4
to both the quasimetric ρ(x, y) and the metric dc(x, y).

Applying the Covering Lemma of [70, Lemma 1.66] in the case D′ = G or of [72, § 3.1, Lemma 2] in
the case D′ �= G, we infer the existence of an at most countable family

{Pj(wk, tk) : Pj(0, tk) � Pj(0,M)}, k ∈ N, (63)

of sets covering D′ of the form indicated in (61): D′ =
⋃

k∈NPj(wk, tk).

Therefore, it suffices to prove the absolute continuity of f on the intersection of H ν−1-almost every
integral line of the horizontal vector field X1j with the ball Pj(wk, tk); here H ν−1 is the Hausdorff
measure on the surface wkPj0(0, tk) transversal to the foliation Γj ; see (46). Since k ∈ N and j = 1, . . . , n
is arbitrary, the ACL-property of f on D′ will be established.

Step 2. Fix some set Pj(wk, tk) in the family (63). The question of absolute continuity of the
mapping f : Pj(wk, tk) → D′ reduces to that of the composition f ◦ lwk

: Pj(0, tk) → D′, where lwk
is the

left translation: G � x 
→ wk · x.
To avoid bulky formulas, put

Q0 = Pj0(0, tk), Q = Pj(0, tk). (64)

It is obvious that the part of the plane Q0 ⊂ {y ∈ G : y1j = 0} is transversal to the foliation Γj .
Consider the restriction ρ̃ = ρ|Q0 of the metric ρ to Q0. Note some useful properties of the metric

structure (Q0, ρ̃) and the measures H ν−1 and H N−1 on Q0.
(1) The metric function ρ̃ is a quasimetric in the sense of Subsection 4.1.4; i.e., ρ̃ : Q0 ×Q0 → [0,∞)

enjoys the properties (a1)–(c1) of Subsection 4.1.4 for all points x, y ∈ Q0.
(2) The Hausdorff measure H ν−1 (see Subsection 4.1.5) satisfies the doubling condition: for the ball

Bρ̃(y, t) and the Hausdorff measure H ν−1 on Q0 we have

H ν−1(Bρ̃(y, 2t)) ≤ μH ν−1(Bρ̃(y, t)) (65)

10)The value of M is governed by the necessity to ensure (65)–(67), while the exact value of M is not used in
the proof.
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for all y ∈ Q0 and Bρ̃(y, 2t) ⊂ Q0 with some constant μ ∈ (0,∞) independent of y ∈ Q0 and
Bρ̃(y, 2t) ⊂ Q0.

(3) There exist constants c11, c12 ∈ (0,∞) such that

c11H
ν−1(A) ≤ H N−1(A) ≤ c12H

ν−1(A) (66)

for every measurable set A ⊂ Q0.
(4) The quasimetric space (Q0, ρ̃) with the Hausdorff measure H ν−1 satisfying (65) is a space of

homogeneous type; for the definition, see [72, 74] for instance.
(5) The metric space (Q0, ρ̃) endowed with the measure H N−1 is also a space of homogeneous type.

Proof. Since the restriction of a quasimetric to an arbitrary set inherits the properties of the
quasimetric, claim (1) is justified.

The measure doubling property follows from [75, Theorem 3.17]: it shows that H ν−1(Bρ̃(z, r)) ∼
rν−1 uniformly11) in all z ∈ Q0 and Bρ̃(z, r) ⊂ Q.

Moreover, [75, Theorems 3.7 and 3.17] imply that the Hausdorff measure H ν−1(A) of A ⊂ Q0 is
comparable to the Hausdorff measure H N−1(A), as the inequalities in (66) follow from the equivalences

H ν−1(Bρ̃(z, r)) ∼ rν−1 and H N−1(Bρ̃(z, r)) ∼ rν−1, (67)

uniform in z ∈ Q0 and Bρ̃(z, r) ⊂ Q0; see [75, Theorems 3.7 and 3.17].
Property 5 follows from (66) and property 4. �
Step 3. The mapping h : Q0 × Ik 
→ Q, where Ik = (−tk, tk), see (64), defined as

Q0 × Ik � (z, yj) 
→ h(z, yj) = (z, z exp yjX1j) (68)

is a diffeomorphism. We can choose M > 0 in (63) so that

0 < κ1 ≤ | deth(z, yj)| ≤ κ2 < ∞ (69)

for all points (z, yj) ∈ Q0×Ik with constants κ1, κ2 ∈ (0,∞), independent of k ∈ N, where k is from (63).
Using (68), we can transport integration over Q to the open set Q0 × Ik. Consider on Q0 × Ik the

tensor product Λ of the measure H ν−1 on Q0 and the measure H 1 on Ik. By (66),
the measure Λ is comparable with the measure H N :

κ3Λ(E) ≤ H N (E) ≤ κ4Λ(E)

for every measurable set E ⊂ Q0 × Ik. The constants κ3, κ4 ∈ (0,∞) are independent of the choice of
E ⊂ Q0 × Ik. Consequently, the measures Λ and H N are absolutely continuous with respect to each
other. Therefore, the Radon–Nikodým derivative D(x) of H N with respect to Λ exists and satisfies

κ3 ≤ D(x) =
dH N

dΛ
(x) ≤ κ4 for H N -almost all x ∈ Q0 × Ik. (70)

For the function v(x) = | detDh(x)| ·D(x) of (69) and (70) we have

κ1 · κ3 ≤ v(x) ≤ κ2 · κ4 for H N -almost all x ∈ Q0 × Ik. (71)

If u ∈ L1(Q) is a nonnegative function then (71) implies the same for the product u · v. Using the
above and (13), we infer that

∫

Q

u(y) dH ν(y) =

∫

Q0×Ik

u(h(x))| detDh(x)| dH ν(x)

=

∫

Q0×Ik

u(h(x))| detDh(x)| ·D(x) dΛ(x) =

∫

Q0

dz

∫

Ik

u(h(x))v(z, t) dt

=

∫

Q0

dz

∫

Ik

u(z, γz(τ))v(h−1(z, γz(τ))) dH 1(τ), (72)

11)In the context of this article H ν−1(Bρ̃(z, r)) is equivalent to rν−1 on Q0 if and only if there exist positive
reals ζ1 and ζ2 such that ζ1r

ν−1 ≤ H ν−1(Bρ̃(z, r)) ≤ ζ2r
ν−1 for all z ∈ Q0 and all r with Bρ̃(z, r) ⊂ Q0.
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where the curve γz : Ik → G, defined by the condition γz(τ) = z exp τX1j , has tangent vector |γ̇z(τ)| = 1
for τ ∈ Ik. Here we write the points of Q0 × Ik as the pairs (z, t) with z0 ∈ Q0 and t ∈ Ik, while the
points of Q as the pairs (z, γz(τ)) with z0 ∈ Q0 and τ ∈ Ik.

Step 4. Given z ∈ Q0 (see (64)), and r ∈ (0, tk) with Bρ̃(z, r) ⊂ Q0, consider the tubular neighbor-
hood

E(z, r) =
⋃

τ∈(−tk,tk)

Bc(z exp τX1j , r).

We are interested in the behavior of the ratio

H ν(f(E(z, r)))

rν−1

as r → 0. As [67, the Main Lemma] and [76, Lemma 3] show for Heisenberg and Carnot groups, the
upper limit of this ratio is finite for almost all z ∈ Q0:

V ′(z) = lim
r→0

H ν(f(E(z, r)))

rν−1
< ∞ (73)

for H ν−1-almost all points z ∈ Q0; henceforth V (z, r) = H ν(f(E(z, r))). Thus, V ′(z) < ∞ at all points
z ∈ Q0 \ T ′, where T ′ ⊂ Q0 is some set of H ν−1-measure zero.

Step 5. On the interval Ik = (−tk, tk) (see (64)), take arbitrary disjoint segments Δ1 = [a1, b1],
Δ2 = [a2, b2], . . . ,Δl = [al, bl], of lengths b1, b2, . . . , bl such that b1 + b2 + · · · + bl < 2tk.

Fix a sufficiently small positive real r ∈ (0, tk) with Bρ̃(z, r) ⊂ Q0. To a point z and the interval Δi

associate the open set

Ui(z, r) =
⋃

τ∈Δi

Bc(z exp τX1j , r). (74)

Assume that r > 0 is chosen so small that the open sets U1(z, r), . . . , Ul(z, r) are disjoint and Ui(z, r) ⊂ Q
for i = 1, . . . , l; see (63) and (64).

Consider the continuum Fi = {z exp τX1j : τ ∈ Δi} and the condenser Ei = (Fi, Ui(z, r)). Lemma 41
yields

cap
(

Ei;L
1
p(Ui(z, r);ω)

) ≤ ω(Ui(z, r))

rp
=

∫

Ui(z,r)

ω(y) dy

rp
, i = 1, . . . , l.

On the other hand, for ν − 1 < p < ∞ Lemma 42 implies that

c
ν−1
p

10

diam f(Fi)

H ν(f(Ui(z, r)))
p−(ν−1)

p

≤ cap
ν−1
p
(

f(Ei);L
1
p(Ui)

)

.

Using (55), we deduce from the last two relations that

diam f(Fi)) ≤
( 1

c10

) ν−1
p 1

rν−1
H ν(f(Ui(z, r)))

p−(ν−1)
p ω(Ui(z, r))

ν−1
p . (75)

Summing inequalities (75) for i = 1, . . . , l, applying Hölder’s inequality, and using the properties of
quasiadditive functions, we arrive at

l∑

i=1

diam f(Fi)≤
(

1

c10

) ν−1
p 1

rν−1

( l∑

i=1

H ν(f(Ui(z, r)))

) p−(ν−1)
p
( l∑

i=1

ω(Ui(z, r))

) ν−1
p

≤ c13 · c14
(

Vν(z, r)

rν−1

) q−(ν−1)
q

(

l∑

i=1
ω(Ui(z, r))

rν−1

) ν−1
p

, (76)
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where c13 =
(

1
c10

) ν−1
p and c14 = (βν(2α)ν)

ν−1
p , while the constant βν(2α)ν is defined in (81).

Since the left-hand side of (76) is independent of r, we can pass to the limit on the right-hand side
using an arbitrary sequence rp → 0 as p → ∞. Letting r → 0, we will prove the following inequality
whose validity for H ν−1-almost all z ∈ Q0 is ensured by the existence of limits in the two parentheses
in (76) for H ν−1-almost all z ∈ Q0, as we explain below:

l∑

i=1

diam f(Fi) ≤ lc13 · c14(V ′(z))
p−(ν−1)

p

( ∫

l⋃

i=1

Δi

ω(z, τ) dγz(τ)

) ν−1
p

, (77)

where Δi � τ 
→ γz(τ) = z exp(τX1j). The first quotient in parentheses in (76) has finite limit (73) at
all z ∈ Q0 \ T ′, where T ′ is of H ν−1-measure zero, as we mentioned at step 4.

Let us show that the second factor in (76) has finite limit (see details after (77)) for H ν−1-almost
all z ∈ Q0 and some sequence rp → 0 as p → ∞.

To this end, consider a sole term in the second factor of (76), for instance, with index i; the existence
of a limit for each term would yield the same for finitely many terms. Recalling the definition of Ui(z, r)
in (74), we see that

ω(Ui(z, r)) =

∫

Ui(z,r)

ω(y) dy.

Given a sufficiently small r > 0, put τm = ai +mr for m = 0, 1, . . . ,mr, where mr is the smallest positive
integer with τmr ≥ bi. For all ζ ∈ (τm−1, τm) and some ζm ∈ (τm−1, τm) chosen in (79), we obtain

Bc(z exp ζX1j , r) ⊂ Bc(z exp ζmX1j , 2r) ⊂ Bρ(z exp ζmX1j , 2αr), (78)

where α is a positive constant such that Bc(y, r) ⊂ Bρ(y, αr) for all y ∈ G and ρ > 0.
For r fixed and all m = 1, 2, 3, . . . ,mr we have

1

r

τm∫

τm−1

ω(Bρ(z exp τX1j , 2αr)) dτ = ω(Bρ(z exp ζmX1j , 2αr)) (79)

because the function τ 
→ ω(Bρ(z exp τX1j , 2αr)) is continuous; the number ζm ∈ (τm−1, τm) exists by
the Mean Value Theorem. For this choice of {ζm}, for m = 1, 2, . . . ,mr we infer from (74) and (78) that

Ui(z, r) ⊂
⋃

m

Bρ(z exp ζmX1j , 2αr),

where the union is over the numbers m’s mentioned above. Hence, taking (79) into account, we arrive at

ω(Ui(z, r)) ≤
∑

m

ω(Bρ(z exp ζmX1j , 2αr)) =
1

r

τmr∫

ai

ω(Bρ(z exp τX1j , 2αr)) dτ. (80)

This yields

ω(Ui(z, r))

rν−1
≤ βν(2α)ν

τmr∫

ai

ω(Bρ(z exp τX1j , 2αr))

H N (Bρ(e, 2αr))
dτ, (81)

where βν = H N (Bρ(e, 1)) is the volume of Bρ(e, 1). The integrand in (81) amounts to the value of

ωr(y) =
1

H N (Bρ(e, 2αr))

∫

Bρ(y,2αr)

ω(w) dw
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at y = z exp τX1j , while the function ωr(y) itself is an analog of the Steklov average of ω(y) on the
Carnot group. It is known (see [70, Proposition 1.20] for instance) that

‖ωr(·) − ω(·) | L1(Q)‖ → 0 as r → 0.

Moreover, applying (72) we arrive at the convergence
∫

Ik

|ωrp(z exp τX1j) − ω(z exp τX1j)| dτ → 0 (82)

for some sequence rp → 0 as p → ∞ for all z ∈ Q0 \Σj , where H ν−1(Σj) = 0. In particular, this implies
that the function Ik � τ 
→ ω(z exp τX1j) is summable on Ik for all z ∈ Q0 \ Σj .

It is obvious that (82) also holds on every interval (ai, bi + δi) ⊂ Ik, where δi is an arbitrary real
in (0, tk − bi), while the function (ai, bi + δi) � τ 
→ ω(z exp τX1j) is summable on (ai, bi + δi) for all
z ∈ Q0 \ Σj .

Basing on that, from (81) and (82) for all z ∈ Q0 \ Σj we obtain

lim
p→∞

ω(Ui(z, rp))

rν−1
p

≤ βν(2α)ν lim
p→∞

bi+δ∫

ai

ωrp(z exp τX1j) dτ = βν(2α)ν
bi+δ∫

ai

ω(z exp τX1j) dτ (83)

for every number δ ∈ (0, δi); here we appreciate that τmr ≥ bi and τmr → bi as r → 0. Since δ > 0 is
arbitrary and the Lebesgue integral is absolutely continuous, (83) yields

lim
p→∞

ω(Ui(z, rp))

rν−1
p

≤ βν(2α)ν
bi∫

ai

ω(z exp τX1j) dτ.

Since the second factor in (76) involves finitely many terms, (77) is justified for all points z ∈
Q0 \ (T ′ ∪ Σj), where T ′ ∪ Σj ⊂ Q0 has H ν−1-measure zero.

Step 6. We also see from (77) that the absolute continuity of f : γz → D for each fixed z is
guaranteed by that of the integral ∫

Ik

ω(z exp τX1j) dτ

on the interval {z exp tX1j : t ∈ Ik} of the integral line of the vector field X1j . Consequently, we can
extend (77) to arbitrary countable disjoint collections of segments Δi ⊂ Ik.

Since j can be an arbitrary positive integer from 1 to n, the absolute continuity of f : D′ → D is
established. Thus, in view of (57), we proved that f ∈ W 1

1,loc(D
′); for the details, see [73, Proposition 4.2].

4.5. Applications. The following theorem is stated in [18]:

Theorem 43 [18, Theorem 9]. Consider two domains D and D′ on a Carnot group. Suppose that
a homeomorphism ϕ : D → D′ induces the bounded composition operator ϕ∗ : L1

p(D
′) ∩ Lipl(D

′) →
L1
q(D), where ν − 1 < q ≤ p < ∞. Then the inverse mapping ϕ−1 : D′ → D induces the bounded

composition operator ϕ−1∗ : L1
r(D) ∩ Lipl(D) → L1

s(D
′), where r = q

q−(ν−1) and s = p
p−(ν−1) .

However, the proof in [18] contains some gaps that were imported from [17] but can be repaired by
using the results of Section 4. The gap in [17] is also filled by [20, Theorem 6] and, by a different method,
Theorem 23 of this article.

Indeed, if ϕ : D → D′ induces the bounded composition operator ϕ∗ : L1
p(D

′) ∩ Lipl(D
′) → L1

q(D)

then ϕ ∈ L1
q,loc(D) and ϕ has finite distortion; see [18, Proposition 1 and Theorem 2]). By Proposition 40,
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the inverse mapping ϕ−1 belongs to W 1
1,loc(D

′) and has finite distortion. The last property is necessary in

order for ϕ−1 : D′ → D to induce the bounded composition operator ϕ−1∗ : L1
r(D) ∩ Lipl(D) → L1

s(D
′),

where r = q
q−(ν−1) and s = p

p−(ν−1) . No proof that the distortion of ϕ−1 is finite is given in [18].

4.6. Generalizations. The method of Section 4 also applies to the generalizations of Theorems 21
and 23 to continuous discrete open mappings of Carnot groups.
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