期刊论文详细信息
Journal of inequalities and applications
The existence of ground state solution to elliptic equation with exponential growth on complete noncompact Riemannian manifold
article
Chungen Liu1  Yanjun Liu2 
[1] School of Mathematics and Information Science, Guangzhou University;School of Mathematical Sciences, Nankai University
关键词: Trudinger–Moser inequality;    Riemannian manifold;    Exponential growth;    The ground state solution;   
DOI  :  10.1186/s13660-020-02338-4
学科分类:电力
来源: SpringerOpen
PDF
【 摘 要 】

In this paper, we consider the following elliptic problem: $$ -\mathtt{div}_{g}\bigl( \vert \nabla_{g} u \vert ^{N-2}\nabla_{g} u \bigr)+V(x) \vert u \vert ^{N-2}u = \frac{f(x, u)}{a(x)}\quad \mbox{in } M, \qquad (P_{a}) $$ where $(M, g)$ be a complete noncompact N-dimensional Riemannian manifold with negative curvature, $N\geq2$, V is a continuous function satisfying $V(x) \geq V_{0 }> 0$, a is a nonnegative function and $f(x, t)$ has exponential growth with t in view of the Trudinger–Moser inequality. By proving some estimates together with the variational techniques, we get a ground state solution of ($P_{a}$). Moreover, we also get a nontrivial weak solution to the perturbation problem.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202106300003451ZK.pdf 1670KB PDF download
  文献评价指标  
  下载次数:11次 浏览次数:2次