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Abstract
In this paper, we consider the following elliptic problem:

–divg(|∇gu|N–2∇gu) + V(x)|u|N–2u = f (x,u)
a(x)

inM, (Pa)

where (M,g) be a complete noncompact N-dimensional Riemannian manifold with
negative curvature, N ≥ 2, V is a continuous function satisfying V(x) ≥ V0 > 0, a is a
nonnegative function and f (x, t) has exponential growth with t in view of the
Trudinger–Moser inequality. By proving some estimates together with the variational
techniques, we get a ground state solution of (Pa). Moreover, we also get a nontrivial
weak solution to the perturbation problem.
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1 Introduction and main results
Suppose Ω ⊂R

N is a bounded smooth domain, and we consider the following problem:

–div
(|∇u|p–2∇u

)
= f (x, u), x ∈ Ω , (1.1)

when p = 2, |f (x, u)| ≤ c(|u|+ |u|q–1), 1 < q ≤ 2∗ = 2N
N–2 , N > 2, for corresponding results one

may refer to Brézis [1], Brézis and Nirenberg [2], Bartsch and Willem [3], Capozzi, Fortu-
nato and Palmieri [4]. Garcia and Alonso [5] generalized Brézis and Nirenberg’s existence
and nonexistence results to the p-Laplace equation. When p = N and f (x, u) behaves like

eα|u| N
N–1 as |u| → ∞, problem (1.1) was studied by Adimurthi [6], Adimurthi and Yadava

[7], Ruf et al. [8, 9], do Ó [10], Panda [11] and the references therein. Specially, Lam and Lu
[12] study the case which does not satisfy the Ambrosetti–Rabinowitz condition. All these
results are based on the Trudinger–Moser inequality [13, 14] and critical point theory.
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For the following semilinear Schrödinger equation:

–div
(|∇u|p–2∇u

)
+ V (x)|u|p–2u = f (x, u), x ∈R

N , (1.2)

when p = 2, |f (x, u)| ≤ c(|u| + |u|q–1), 1 < q ≤ 2∗ = 2N
N–2 , N > 2, for the relevant literature

one is referred to Kryszewski and Szulkin [15], Alama and Li [16], Ding and Ni [17] and

Jeanjean [18]. When p = N , f (x, s) is continuous in R
N × R and behaves like eα|s| N

N–1 as
|s| → ∞, it was studied by Cao [19] in the case N = 2, by Panda [20], do Ó [21], Alves,
Figueiredo [22] and do Ó et al. [23] in general dimensional cases. We note that the Sobolev
embedding theorem can be applied to the p < N case, while the Trudinger–Moser type
embedding theorem can be applied to the p = N case.

The Trudinger–Moser inequalities have been generalized to some Riemannian man-
ifolds. In the case of compact Riemannian manifolds, the study of Trudinger–Moser in-
equalities can be traced back to Aubin [24], Cherrier [25, 26], and Fontana [27]. On a com-
pact Riemannian surface, Ding et al. [28] established a Trudinger–Moser inequality and
used it to deal with the prescribed Gaussian curvature problem by the method of blow-
up analysis. Motivated by the ideas of Ding et al., the existence of extremal functions was
proved by Li in [29, 30], Yang also got extremal functions for several Trudinger–Moser
type inequalities in [31, 32].

When (M, g) is any complete noncompact N-dimensional Riemannian manifold with
no boundary, N ≥ 2, if its Ricci curvature is bounded from below and injectivity radius
is bounded from below by a positive number, Yang in [33] established some Trudinger–
Moser inequalities and applied them to some quasilinear equations. Recently, Yang et al.
[34] derived a sharp Trudinger–Moser inequality on a complete, simply connected N-
dimensional Riemannian manifold with negative curvature. We state it below for further
use.

Proposition A ([34]) Let (M, g) be a complete, simply connected N-dimensional Rieman-
nian manifold with negative curvature, N ≥ 2. Then for any τ > 0 there exists a positive
constant C = C(τ , N , M) such that

sup
u∈W 1,N (M),‖u‖1,τ ≤1

∫

M

(
Φ

(
αN |un| N

N–1
))

dvg ≤ C.

Furthermore, the constant αN = Nω
1/(N–1)
N–1 is sharp, where ωN–1 is the surface measure of

the unit sphere in R
N . Φ(x) = ex –

∑N–2
k=0

xk

k! and

‖u‖1,τ =
(∫

M
|∇gu|N dvg + τ

∫

M
|u|N dvg

) 1
N

.

More recently, Kristály [35] studied some geometric features of Trudinger–Moser in-
equalities on complete noncompact Riemannian manifolds and proved the existence of a
non-zero isometry-invariant solution for a class of N-Laplacian equation by combining
variational techniques and the symmetrization-compactness principle.

In this paper, we always assume that (M, g) is a complete, simply connected N-
dimensional Riemannian manifold with negative curvature, N ≥ 2. And on (M, g), we
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consider the following quasilinear equations:

–divg
(|∇gu|N–2∇gu

)
+ V (x)|u|N–2u =

f (x, u)
a(x)

in M, (Pa)

–divg
(|∇gu|N–2∇gu

)
+ V (x)|u|N–2u =

f (x, u)
a(x)

+ εh(x) in M, (P)

where ε > 0, h ∈ E∗, h ≥ 0 and h �≡ 0, (M, g) is a complete noncompact N-dimensional
Riemannian manifold with negative curvature, N ≥ 2, ∇g denotes its covariant derivative
(the Levi–Civita connection), and divg denotes its divergence operator, V is a continuous
function satisfying V (x) ≥ V0 > 0, a is a nonnegative function and f (x, t) has exponential
growth with t in view of the Trudinger–Moser inequality. Since we are concerned with
nonnegative weak solutions, we require that f (x, t) = 0 for all (x, t) ∈ M × (–∞, 0]. Fur-
thermore, let O be a fixed point of M and dg(·, ·) be the geodesic distance between two
points of (M, g). We assume the function a satisfies:

(a1) a–1 ∈ Ls
loc(M) for some s > 1, i.e., a–1 ∈ Ls(Bρ(O)) for any ρ > 0.

(a2) a–1 is bounded in M \ Bρ(O) for any ρ > 0.
We assume the following conditions on V .
(V1) There exists a constant V0 > 0 such that V (x) ≥ V0 for all x ∈ M.
(V2) V (x) → +∞ as dg(O, x) → +∞.
The function f satisfies:
(f1) There exist constants α0, c1, c2 > 0 such that, for all (x, t) ∈ M ×R

+,

f (x, t) ≤ c1|t|N–1 + c2Φ
(
α0|un| N

N–1
)
,

where

Φ(x) = ex –
N–2∑

k=0

xk

k!
.

(f2) lim|t|→+∞ F(x,t)
|t|N = ∞ uniformly on x ∈ M, where F(x, t) =

∫ t
0 f (x, s) ds.

(f3) There exists C > 0 such that, for all (x, t) ∈ M ×R
+, F(x, t) ≤ C|t|N + Cf (x, t).

Define a function space E as

E =
{

u ∈ W 1,N (M) :
∫

M

(|∇gu|N + V (x)|u|N)
dvg < ∞

}

equipped with the norm

‖u‖E =
(∫

M

(|∇gu|N + V (x)|u|N)
dvg

) 1
N

,

then the assumption V (x) ≥ V0 > 0 implies that E is a reflexive Banach space. For any
p ≥ N , we define

Sp = inf
u∈E\{0}

‖u‖E

(
∫

M
|u|p
a(x) dvg)

1
p

(1.3)
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and

λa = inf
u∈E\{0}

‖u‖N
E∫

RN
|u|N
a(x) dx

.

The continuous embedding of E ↪→ W 1,N (M) ↪→ Lp(M) (p ≥ N ) and the Hölder inequality
imply

∫

M

|u|p
a(x)

dvg =
∫

M\Bρ (O)

|u|p
a(x)

dvg +
∫

Bρ (O)

|u|p
a(x)

dvg

≤ C
∫

M\Bρ (O)
|u|p dvg +

(∫

Bρ (O)
|u|ps′ dvg

) 1
s′
(∫

Bρ (O)

(
1

a(x)

)s

dvg

) 1
s

≤ C‖u‖p
E ,

here s is stated in the condition (a1). Thus we have Sp > 0. We now introduce the following
three conditions.

(f4) lim supt→0+
NF(x,t)

|t|N < λa uniformly in M.
(f5) There exist constants p > N and Cp such that

f (x, t) ≥ Cptp–1,

where

Cp >
(

p – N
p

) p–N
N

(
sα0

(s – 1)αN

) (p–N)(N–1)
N

Sp
p .

(f6) H(x, t) = tf (x, t) – NF(x, t) is strictly increasing in t > 0.
Our main results can be stated as follows.

Theorem 1.1 Suppose V satisfies (V1) and (V2), a satisfies (a1) and (a2), f satisfies (f1)–
(f6). Then the problem (Pa) has a positive ground state solution.

Remark 1.2
(1) When (M, g) is the standard Euclidean space R

N and a(x) = |x|η (0 ≤ η < N ), the
equation (Pa) and the perturbation problem (P) have been studied by many authors
such as Adimurthi and Yang [36], Yang [37], Lam and Lu [38].

(2) Comparing with the existing literature, we firstly study the ground state solution of
problem (Pa) on complete noncompact Riemannian manifold without the
Ambrosetti–Rabinowitz condition.

Theorem 1.3 Suppose V satisfies (V1) and (V2), a satisfies (a1) and (a2), f satisfies (f1)–(f4)
and (f6). Then the perturbation problem (P) has a nontrivial weak solution of mountain-
pass type.

This paper is organized as follows: In Sect. 2, some preliminary results are introduced.
In Sect. 3, we study the functionals and related compact analysis. In Sect. 4, we give a proof
of Theorem 1.1. Finally, in Sect. 5, we prove Theorem 1.3.
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2 Preliminaries
In this section, we give some preliminaries for later use.

Lemma 2.1 Suppose a satisfies (a1) and (a2), V satisfies condition (V1). Let α > 0 and {un}
be a sequence satisfying

lim sup
n→∞

‖un‖
N

N–1
E <

αN

α
,

where αN = Nω
1/(N–1)
N–1 is the sharp constant in Proposition A. Then there exist constants

t > 1, C > 0, independent of n, such that

∫

M

[Φ(α|un| N
N–1 )]t

a(x)
dvg ≤ C.

Proof Since

lim sup
n→∞

‖un‖E <
(

αN

α

) N–1
N

,

passing to a subsequence, there exists n0 ∈N such that

‖un‖
N

N–1
E ≤ m <

αN

α
, ∀n ≥ n0.

Choose k > ts′ > 1 such that kαm < αN and t < s, here s is stated in the condition (a1) and
1
s + 1

s′ = 1. Now for each n ≥ n0, combining with m

‖un‖
N

N–1
E

≥ 1,

∫

M

[Φ(α|un| N
N–1 )]t

a(x)
dvg

=
∫

Bρ (O)

[Φ(α|un| N
N–1 )]t

a(x)
dvg +

∫

M\Bρ (O)

[Φ(α|un| N
N–1 )]t

a(x)
dvg

≤ ∥
∥a–1∥∥

Ls(Bρ (O))

(∫

Bρ (O)

(
Φ

(
α|un| N

N–1
))ts′ dvg

) 1
s′

+ C
∫

M\Bρ (O)

(
Φ

(
α|un| N

N–1
))t dvg

≤ ∥
∥a–1∥∥

Ls(Bρ (O))

(∫

M
Φ

(
ts′α|un| N

N–1
)

dvg

) 1
s′

+ C
∫

M
Φ

(
tα|un| N

N–1
)

dvg

≤ C
∫

M
Φ

(
kα|un| N

N–1
)

dvg ≤ C
∫

M
Φ

(
kαm

( |un|
‖un‖E

) N
N–1

)
dvg .

The property Φ(q)p ≤ Φ(pq) (see [37]) has been used above. Finally, the result is derived
from Proposition A by taking τ = V0 in condition (V1). �

Lemma 2.2 Suppose V satisfies (V1) and (V2), a satisfies (a1) and (a2), we have E ↪→
Lq(M), q ≥ N . Moreover, this continuous embedding is compact.
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Proof From the condition (V1), we have E ↪→ W 1,N (M), together with the standard
Sobolev embedding theorem W 1,N (M) ↪→ Lq(M) for any q ≥ N , we immediately derive
that E can be continuously embedded into Lq(M).

Next, for any q ≥ N , one needs to prove that the above continuous embedding E ↪→
Lq(M) is compact. Let {un} be a sequence of functions with ‖un‖N

E ≤ C for some constant
C, it suffices to prove that, up to a subsequence, {un} strongly converges in Lq(M). Ob-
viously {un} is also bounded in W 1,N (M), thus we can assume that, for any q ≥ N , there
exists u0 ∈ E such that up to a subsequence

⎧
⎪⎪⎨

⎪⎪⎩

un ⇀ u0 in E,

un → u0 in Lq(Bρ(O)),

un(x) → u0(x) a.e. in M.

Hence for any ε > 0, there exists some positive integral n0, such that when n > n0,
∫

Bρ (O)
|un – u0|N dvg <

ε

2
. (2.1)

On the other hand, for any ε > 0, from the condition (V2), we can assume V (x) > 4C/ε
when x ∈ M \ Bρ(O), so

4C
ε

∫

M\Bρ (O)
|un – u0|N dvg <

∫

M\Bρ (O)
V |un – u0|N dvg ≤ 2C,

thus
∫

M\Bρ (O)
|un – u0|N dvg <

ε

2
. (2.2)

From (2.1) and (2.2), when n > n0, we obtain
∫

M
|un – u0|N dvg < ε. (2.3)

By Hölder’s inequality and the continuous embedding E ↪→ Lq(M) (q ≥ N ), we have
∫

M
|un – u0|q dvg =

∫

M
|un – u0| · |un – u0|q–1 dvg

≤
(∫

M
|un – u0|N dvg

) 1
N
(∫

M
|un – u0| N(q–1)

N–1 dvg

) N–1
N

≤ C
(∫

M
|un – u0|N dvg

) 1
N

.

Combining with (2.3), we see that {un} strongly converges in Lq(M). �

Lemma 2.3 Suppose V satisfies (V1), a satisfies (a1) and (a2). Let β > 0 and ‖u‖E ≤ M
such that βM

N
N–1 < αN and q > N , then

∫

M
|u|q Φ(β|u| N

N–1 )
a(x)

dvg ≤ C(β , N)‖u‖q
E.
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Proof On the one hand, using the Hölder inequality, we have

∫

Bρ (O)
|u|q Φ(β|u| N

N–1 )
a(x)

dvg

≤ ∥
∥a–1∥∥

Ls(Bρ (O))

(∫

Bρ (O)
|u|qk dvg

) 1
k
(∫

M

(
Φ

(
β|u| N

N–1
))t dvg

) 1
t
, (2.4)

where t > 1 is sufficiently close 1 such that βtM
N

N–1 < αN and 1/s + 1/k + 1/t = 1.
On the other hand, we get

∫

M\Bρ (O)
|u|q Φ(β|u| N

N–1 )
a(x)

dvg

≤ C
(∫

M
|u|qγ ′

dvg

) 1
γ ′ (∫

M

(
Φ

(
β|u| N

N–1
))γ dvg

) 1
γ

, (2.5)

where γ > 1 is sufficiently close 1 such that βγ M
N

N–1 < αN , 1/γ ′ + 1/γ = 1.
From (2.4) and (2.5), by Proposition A and the continuous embedding of E ↪→ Lq(RN )

(q ≥ N ), we have

∫

M
|u|q Φ(β|u| N

N–1 )
a(x)

dvg ≤ C(β , N)‖u‖q
E.

This completes the proof. �

3 Functionals and compactness analysis
We say that u ∈ E is a weak solution of problem (Pa) if, for all φ ∈ E,

∫

M

(|∇gu|N–2∇gu∇gφ + V (x)|u|N–2uφ
)

dvg –
∫

M

f (x, u)
a(x)

φ dvg = 0.

Define the functional I : E →R by

I(u) =
1
N

‖u‖N
E –

∫

M

F(x, u)
a(x)

dvg , (3.1)

where F(x, t) =
∫ t

0 f (x, s) ds. I is well defined and I ∈ C1(E,R) thanks to the Trudinger–
Moser inequality. A straightforward calculation shows that

〈
I ′(u),φ

〉
=

∫

M
|∇gu|N–2∇gu∇gφ dvg +

∫

M
V (x)|u|N–2uφ dvg –

∫

M

f (x, u)
a(x)

φ dvg , (3.2)

for all u,φ ∈ E. Hence, a critical point of I defined in (3.1) is a weak solution of (Pa).
In this paper, we will use the mountain-pass theorem for the existence of the Cerami

sequence which was introduced in [39, 40].

Definition A Let (E,‖ · ‖E) be a real Banach space with its dual space (E∗,‖ · ‖E∗ ). Suppose
I ∈ C1(E,R). For c ∈R, we call {un} ⊂ E a (C)c sequence of the functional I , if

I(un) → c and
(
1 + ‖un‖E

)∥∥I ′(un)
∥
∥

E∗ → 0 as n → ∞.
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Proposition B Let (E,‖ · ‖E) be a real Banach space, I ∈ C1(E,R), I(0) = 0 and satisfies:
(i) There exist positive constants δ and r such that

I(u) ≥ δ for ‖u‖E = r

and
(ii) there exists e ∈ E with ‖e‖E > r such that

I(e) ≤ 0.

Define c by

c = inf
γ∈Γ

max
t∈[0,1]

I
(
γ (t)

)
,

where

Γ =:
{
γ ∈ C

(
[0, 1] : E

)
: γ (0) = 0,γ (1) = e

}
.

Then I possesses a (C)c sequence.

Next we will check the geometry of the functional I .

Lemma 3.1 Assume that (V1), (f1) and (f4) hold, a satisfies (a1) and (a2). Then there exist
positive constants δ and r such that

I(u) ≥ δ for ‖u‖E = r.

Proof From (f4), there exist σ , ε > 0, such that if |u| ≤ ε,

F(x, u) ≤ λa – σ

N
|u|N

for all x ∈ M. On the other hand, using (f1) for each q > N , we have

F(x, u) ≤ c1

N
|u|N + c2|u|Φ(

α0|un| N
N–1

)

≤ C|u|qΦ(
α0|un| N

N–1
)

for |u| ≥ ε and x ∈ M. Combining the above estimates, we obtain

F(x, u) ≤ λa – σ

N
|u|N + C|u|qΦ(

α0|un| N
N–1

)
,

for all (x, u) ∈ M × R. Fix r > 0 small enough such that α0r
N

N–1 < αN , then Lemma 2.3
implies

I(u) =
1
N

‖u‖N
E –

∫

M

F(x, u)
a(x)

dvg

≥ 1
N

‖u‖N
E –

λa – σ

N

∫

M

|u|N
a(x)

dvg – C
∫

M

|u|qΦ(α0|un| N
N–1 )

a(x)
dvg
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≥ 1
N

‖u‖N
E –

λa – σ

N

∫

M

|u|N
a(x)

dvg – C‖u‖q
E

≥ 1
N

(
1 –

λa – σ

λa

)
‖u‖N

E – C‖u‖q
E=

σ

Nλa
‖u‖N

E – C‖u‖q
E ,

for ‖u‖E ≤ r. Hence, I is bounded from below for ‖u‖E ≤ r. Since σ > 0 and q > N , we may
choose a small r that satisfies the inequality

σ

Nλa
rN – Crq ≥ σ

2Nλa
rN ,

and we derive that

I(u) ≥ σ

2Nλa
rN := δ > 0 for ‖u‖E = r.

This completes the proof. �

Lemma 3.2 If the condition (f2) is satisfied, then there exists e ∈ Bc
r(0) such that

I(e) < inf‖u‖E=r
I(u),

where r is given in Lemma 3.1.

Proof Let u ∈ E \ {0}, u ≥ 0 with compact support Ω = supp(u), by (f2), there exists d such
that, for all (x, s) ∈ Ω ×R

+,

F(x, s) ≥ MsN – d.

Then

I(tu) ≤ tN

N
‖u‖N

E – MtN
∫

Ω

|u|N
a(x)

dvg + O(1)

≤ tN
(‖u‖N

E
N

– M
∫

Ω

|u|N
a(x)

dvg

)
+ O(1).

Now, choose M > ‖u‖N
E

∫
Ω

|u|N
a(x) dvg

, which implies that I(tu) → –∞ as t → ∞. Setting e = tu with

t sufficiently large, the proof of the lemma is completed. �

From Lemmas 3.1 and 3.2, we get a (C)c sequence {un} ⊂ E by using Proposition B, i.e.,

I(un) → c > 0 and
(
1 + ‖un‖E

)∥∥I ′(un)
∥
∥

E∗ → 0 as n → ∞ (3.3)

where

c = inf
γ∈Γ

max
t∈[0,1]

I
(
γ (t)

)

and

Γ =:
{
γ ∈ C

(
[0, 1] : E

)
: γ (0) = 0,γ (1) = e

}
.
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Lemma 3.3 Suppose V satisfies (V1) and (V2), a satisfies (a1) and (a2), f satisfies (f5), then
the level c ∈ (0, 1

N ((1 – 1
s ) αN

α0
)N–1).

Proof Firstly, we claim the best constant Sp (p > N ) in (1.3) can be obtained. In fact, since

Sp = inf
u∈E\{0}

‖u‖E

(
∫

M
|u|p
a(x) dvg)

1
p

,

we can choose un such that
∫

M

|un|p
a(x)

dvg = 1 and ‖un‖E → Sp as n → ∞,

so un is bounded in E. From Lemma 2.2, there exists u ∈ E such that up to a subsequence
un ⇀ u in E, un → u in Lp(M) and un(x) → u(x) almost everywhere in M, so un → u in
Lq(Bρ(O)) for all q > 1 and a ∈ Ls(Bρ(O)), by the Hölder inequality

∫

Bρ (O)

|un|p
a(x)

dvg →
∫

Bρ (O)

|u|p
a(x)

dvg .

From (a2), we have

∫

M\Bρ (O)

∣∣∣
∣
|un|p – |u|p

a(x)

∣∣∣
∣dvg ≤ pC

∫

M

(|un|p–1 + |u|p–1)|un – u|dvg

≤ C
(∫

M
|un – u|p dvg

) 1
p

→ 0.

This implies
∫

M

|u|p
a(x)

dx = lim
n→∞

∫

M

|un|p
a(x)

dx = 1.

We also have ‖u‖E ≤ limn→∞ ‖un‖E = Sp, thus ‖u‖E = Sp. We finished the proof of the
claim.

We claim that there exists a number t0 > r such that for the above u we have

I(t0u) < 0,

namely, we can take e = t0u as in Lemma 3.2. In fact, for t > 0, by condition (f5), we have

I(tu) ≤ tN

N
SN

p –
tp

p
Cp.

Since p > N , by choosing t0 large enough we get the claim clearly.
From the definition of c, take γ : [0, 1] → E, γ (t) = tt0u with e = t0u as claimed above.

We have γ ∈ Γ and therefore

c ≤ max
t∈[0,1]

I
(
γ (t)

) ≤ max
t≥0

I(tu)

≤ max
t≥0

(
tN

N
SN

p –
tp

p
Cp

)
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=
p – N

Np
S

Np
p–N
p

C
N

p–N
p

<
1
N

((
1 –

1
s

)
αN

α0

)N–1

.

In the last estimation we have used the inequality in condition (f5). The proof of Lemma 3.3
is completed. �

It is well known that the absence of the Cerami compactness condition brings about dif-
ficulties in studying this class of elliptic problems involving critical growth and unbounded
domains. In the next lemma, we will analyze the compactness of Cerami sequences for I .

Lemma 3.4 Suppose that the conditions (V1)–(V2), (f1)–(f4) and (f6) are satisfied, a sat-
isfies (a1) and (a2), let {un} ⊂ E be an arbitrary Cerami sequence of I , then there exists a
subsequence of {un} (still denoted by {un}) and u ∈ E such that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f (x,un)
a(x) → f (x,u)

a(x) strongly in L1
loc(M),

F(x,un)
a(x) → F(x,u)

a(x) strongly in L1(M),

∇gun → ∇gu almost everywhere in M,

|∇gun|N–2∇gun ⇀ |∇gu|N–2∇gu weakly in (LN/(N–1)(M))N .

Furthermore, u is a weak solution of (Pa).

Proof We shall prove that {un} is bounded in E. Indeed, suppose by contradiction that

‖un‖E → +∞

and set

vn =
un

‖un‖E
,

then ‖vn‖ = 1. From Lemma 2.2, we can assume that, for any q ≥ N , there exists v ∈ E such
that up to a subsequence

⎧
⎪⎪⎨

⎪⎪⎩

v+
n ⇀ v+ in E,

v+
n → v+ in Lq(M),

v+
n → v+ a.e. in M.

We will show that v+ = 0 a.e. in M. In fact, if Λ+ = {x ∈ M : v+(x) > 0} has a positive measure,
then in Λ+, we have

lim
n→∞ u+

n = lim
n→∞ v+

n‖un‖ = +∞.

From (f2) we have

lim
n→∞

F(x, u+
n(x))

a(x)|u+
n(x)|N = +∞ a.e. in Λ+
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and

lim
n→∞

F(x, u+
n(x))

a(x)|u+
n(x)|N

∣
∣v+

n(x)
∣
∣N = +∞ a.e. in Λ+.

Thus
∫

M
lim inf

n→∞
F(x, u+

n(x))
a(x)|u+

n(x)|N
∣∣v+

n(x)
∣∣N dvg = +∞.

Since {un} ⊂ E is an arbitrary Cerami sequence of I , we have

‖un‖N
E = Nc + N

∫

M

F(x, u+
n(x))

a(x)
dvg + on(1)

then
∫

M

F(x, u+
n(x))

a(x)
dvg → +∞,

so

lim inf
n→∞

∫

M

F(x, u+
n(x))

a(x)|u+
n(x)|N

∣∣v+
n(x)

∣∣N dvg

= lim inf
n→∞

∫

M

F(x, u+
n(x))

a(x)‖un‖N dvg

= lim inf
n→∞

∫
M

F(x,u+
n (x))

a(x) dvg

Nc + N
∫

M
F(x,u+

n (x))
a(x) dvg + on(1)

=
1
N

.

This is a contradiction. Hence v ≤ 0 a.e. and v+
n ⇀ 0 in E.

Let tn ∈ [0, 1] be such that

I(tnun) = max
t∈[0,1]

I(tun).

For any given A ∈ (0, ((1 – 1
s ) αN

α0
)

N–1
N ), for the sake of simplicity, let

ε =
(1 – 1

s )αN

A
N

N–1
– α0 > 0.

In the following argument we will take A → ((1 – 1
s ) αN

α0
)

N–1
N and so we have ε → 0. From

condition (f1), there exists C > 0 such that

F(x, t) ≤ C|t|N + εΦ
(
(α0 + ε)|t| N

N–1
)
, ∀(x, t) ∈ M ×R

+. (3.4)

In fact, from condition (f1), we have

F(x, t) ≤ C
N

|t|N + |t|Φ(
α0|t| N

N–1
)
.
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By using the Young inequality, for 1
p + 1

q = 1, p, q > 1, we have

ab ≤ ε
ap

p
+ ε–q/p bq

q
.

So we have

F(x, t) ≤ C
N

|t|N +
εΦ(pα0|t| N

N–1 )
p

+ ε–q/p |t|q
q

.

Now we take p = α0+ε

α0
and q = α0+ε

ε
> N . One can see that near infinity |t|q can be estimated

from above by Φ((α0 + ε)|t| N
N–1 ), and near the origin |t|q can be estimated from above by

|t|N .
We also have A

‖un‖ ∈ [0, 1] with sufficient large n, so by using (3.4)

I(tnun) ≥ I
(

A
‖un‖un

)
= I(Avn)

=
AN

N
–

∫

M

F(x, Avn)
a(x)

dvg

=
AN

N
–

∫

M

F(x, Av+
n)

a(x)
dvg

≥ AN

N
–

C
N

AN
∫

M

|v+
n|N

a(x)
dvg – ε

∫

M

Φ((α0 + ε)|Av+
n| N

N–1 )
a(x)

dvg

≥ AN

N
–

C
N

AN
∫

M

|v+
n|N

a(x)
dvg – ε

∫

M

Φ((1 – 1
s )αN |v+

n| N
N–1 )

a(x)
dvg .

Since v+
n ⇀ 0 in E and the embedding E ↪→ Lq(M) (q ≥ N ) is compact, by using the Hölder

inequality, we have
∫

M
|v+

n |N
a(x) dvg → 0. By Proposition A,

∫
M

Φ((1– 1
s )αN |v+

n | N
N–1 )

a(x) dvg is bounded.
Note that when A → ( (s–1)αN

sα0
)

N–1
N , ε → 0, we can show

lim inf
n→∞ I(tnun) ≥ 1

N

((
1 –

1
s

)
αN

α0

)N–1

> c. (3.5)

Notice I(0) = 0 and I(un) → c, we can assume tn ∈ (0, 1), and so I ′(tnun)tnun = 0, it follows
from (f6) that

NI(tnun) = NI(tnun) – I ′(tnun)tnun

= ‖tnun‖N – N
∫

M

F(x, tnun)
a(x)

dvg – ‖tnun‖N +
∫

M

f (x, tnun)tnun

a(x)
dvg

=
∫

M

H(x, tnun)
a(x)

dvg ≤
∫

M

H(x, un)
a(x)

dvg

= NI(un) – I ′(un)un

= NI(un) + on(1) = Nc + on(1),
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which is a contradiction to (3.5). This proves that {un} is bounded in E. It then follows
from (3.3) that

∫

M

f (x, un)un

a(x)
dvg ≤ C,

∫

M

F(x, un)
a(x)

dvg ≤ C.

By (f3), there exists C > 0 such that

F(x, un) ≤ C|un|N + Cf (x, un).

From Lemma 2.2 and the generalized Lebesgue dominated convergence theorem, dis-
cussed as Lemma 7.6 in [33], we can derive that

f (x, un)
a(x)

→ f (x, u)
a(x)

strongly in L1
loc(M) (3.6)

and

F(x, un)
a(x)

→ F(x, u)
a(x)

strongly in L1(M). (3.7)

Now we prove the remaining part of the lemma. Up to a subsequence, we can define an
energy concentration set for any fixed δ > 0,

Σδ =
{

x ∈ M : lim
r→0

lim
n→∞

∫

Br(x)

(|∇gun|N + |un|N
)

dvg ≥ δ

}
.

Since {un} is bounded in E, Σδ must be a finite set. For any x∗ ∈ M \ Σδ , there exists
r : 0 < r < dg(x∗,Σδ) such that

lim
n→∞

∫

Br (x∗)

(|∇gun|N + |un|N
)

dvg < δ.

It follows that, for large n,

∫

Br (x∗)

(|∇gun|N + |un|N
)

dvg < δ. (3.8)

Thanks to the Trudinger–Moser inequality in Lemma 2.1, for sufficiently small δ > 0, there
exists q > 1 such that

∫

Br (x∗)

|f (x, un)|q
a(x)

dvg ≤ C. (3.9)

For any L > 0, we denote

AL =
{

x ∈ Br
(
x∗) :

∣∣u(x)
∣∣ ≥ L

}
.
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It can be estimated that
∫

AL

|f (x, un) – f (x, u)||u|
a(x)

dvg

≤
(∫

AL

|f (x, un) – f (x, u)|q
a(x)

dvg

) 1
q
(∫

AL

|u|q′

a(x)
dvg

) 1
q′

≤
[(∫

Br(x∗)

|f (x, un)|q
a(x)

dvg

) 1
q

+
(∫

Br (x∗)

|f (x, u)|q
a(x)

dvg

) 1
q
]

×
(∫

Br(x∗)

1
a(x)s dvg

) 1
q′s

(∫

AM

|u|q′t′ dx
) 1

q′t′

≤ C
(∫

AL

|u|q′t′ dvg

) 1
q′t′

,

where 1
q + 1

q′ = 1, 1
s + 1

s′ = 1. Here we have used (3.9) in the last inequality. Since u ∈
Lq′t′ (Br(x∗)), we have, for any β > 0,

∫

AL

|f (x, un) – f (x, u)||u|
a(x)

dvg < β , (3.10)

provided that L is chosen sufficiently large. It follows from (3.6) that

lim
n→∞

∫

Br (x∗)\AL

|f (x, un) – f (x, u)||u|
a(x)

dvg = 0. (3.11)

Combining (3.10) and (3.11), we have

lim
n→∞

∫

Br (x∗)

|f (x, un) – f (x, u)||u|
a(x)

dvg ≤ β ,

and thanks to the fact that β > 0 is arbitrary,

lim
n→∞

∫

Br (x∗)

|f (x, un) – f (x, u)||u|
a(x)

dvg = 0. (3.12)

On the other hand, we have by using the Hölder inequality, (3.6), and (3.9),

∫

Br (x∗)

|f (x, un)||un – u|
a(x)

dvg

≤
(∫

Br (x∗)

|f (x, un)|q
a(x)

dvg

) 1
q
(∫

Br (x∗)

1
a(x)s dvg

) 1
q′s ‖un – u‖Lq′s′ (Br(x∗))

≤ C‖un – u‖Lq′s′ (Br (x∗)) → 0, (3.13)

where 1
q + 1

q′ = 1, 1
s + 1

s′ = 1. Combining (3.12) and (3.13), we get

lim
n→∞

∫

Br (x∗)

|f (x, un) – f (x, u)u|
a(x)

dvg = 0.
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A covering argument implies that, for any compact set K ⊂⊂ M \ Σδ ,

lim
n→∞

∫

K

|f (x, un) – f (x, u)u|
a(x)

dvg = 0. (3.14)

Next, we will prove for any compact set K ⊂⊂ M \ Σδ

lim
n→∞

∫

K
|∇gun – ∇gu|N dvg = 0. (3.15)

It suffices to prove for any x∗ ∈ M \ Σδ and r given by (3.9), we have

lim
n→∞

∫

B r
2

(x∗)
|∇gun – ∇gu|N dvg = 0. (3.16)

For this purpose, we take φ ∈ C∞
0 (Br(x∗)) with 0 ≤ φ ≤ 1 and φ ≡ 1 in B r

2
(x∗). By the

Hölder inequality and the compact embedding of E ↪→ LN (M), we have

lim
n→∞

∫

Br (x∗)
|∇gun|N–2∇gun∇gφ(u – un) dvg = 0. (3.17)

Since ∇un ⇀ ∇u in (LN (M))N , we have

lim
n→∞

∫

Br (x∗)
φ|∇gun|N–2∇gu(∇gu – ∇gun) dvg = 0. (3.18)

The Hölder inequality and (3.13) implies that

lim
n→∞

∫

Br (x∗)
φ(un – u)

f (x, un)
a(x)

dvg → 0. (3.19)

Note that

〈|x|N–2x – |y|N–2y, x – y
〉

=
|x|N–2 + |y|N–2

2
|x – y|2 +

(|x|N–2 – |y|N–2)(|x|2 – |y|2)
2

.

Hence,

〈|x|N–2x – |y|N–2y, x – y
〉 ≥ |x|N–2 + |y|N–2

2
|x – y|2 ≥ 22–N |x – y|N . (3.20)

Obviously φun is a bounded sequence in E. Inserting ϕ = φun and ϕ = φu into (3.3), re-
spectively, we have from (3.17)–(3.20) and τn → 0 as n → ∞

0 ≤ 22–N
∫

Br (x∗)
|∇gun – ∇gu|N dvg

≤
∫

Br(x∗)
φ
〈|∇gun|N–2∇gun – |∇gu|N–2∇gu,∇gun – ∇gu

〉
dvg

≤
∫

Br(x∗)
|∇gun|N–2∇gun∇gφ(u – un) dvg +

∫

Br (x∗)
φ|∇gu|N–2∇gu(∇gu – ∇gun) dvg

+
∫

Br (x∗)
φ(un – u)

f (x, un)
a(x)

dvg + τn‖φun‖ + τn‖φu‖ → 0. (3.21)
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We derive (3.16) from (3.21). Hence, (3.15) holds thanks to a covering argument. Since
Σδ is a finite set, it follows that ∇gun converges to ∇gu almost everywhere in M. This
immediately implies, up to a subsequence,

|∇gun|N–2∇gun ⇀ |∇gu|N–2∇u in
(
L

N
N–1

(
BR(0)

))N

for all R > 0. For any fixed ϕ ∈ C∞
0 (M), there exists some R0 > 0 such that the support of ϕ

is contained in the ball BR0 (O). Hence,

lim
n→∞

∫

M

(|∇gun|N–2∇gun – |∇gu|N–2∇gu
)
ϕ dvg → 0.

This equality holds for all ϕ ∈ L
N

N–1 (M), thanks to the density of C∞
0 (M) in L

N
N–1 (M). Hence,

we obtain

|∇gun|N–2∇gun ⇀ |∇gu|N–2∇gu in
(
L

N
N–1 (M)

)N , (3.22)

we obtain by combining (3.6) and (3.22),

〈
I ′(u),ϕ

〉
= 0, ∀ϕ ∈ C∞

0 (M).

Since C∞
0 (M) is dense in E, the above equation implies that u is a weak solution of (Pa).

This completes the proof of the lemma. �

4 The ground state solution

Proof of Theorem 1.1 By the process of proof in Lemma 3.4, we see that the Cerami se-
quence {un} is bounded in E and its weak limit u is a critical point of the functional I .

We will show that u is nonzero. If u ≡ 0, since F(x, 0) = 0 for all x ∈R
N , from Lemma 3.4,

we have

lim
n→∞‖un‖N

E = Nc > 0. (4.1)

Lemma 3.3 implies 0 < c < 1
N ((1 – 1

s ) αN
α0

)N–1, so there exist some ε0 > 0 and n∗ > 0 such that
‖un‖N

E ≤ ((1 – 1
s ) αN

α0
– ε0)N–1 for all n > n∗. Choose q > 1 sufficiently close to 1 such that

qα0‖un‖
N

N–1
E ≤ (1 – 1

s )αN – ε0α0/2 for all n > n∗. By (f1),

f (x, un) ≤ c1|un|N + c2|un|Φ
(
α0|un| N

N–1
)
,

thus

∫

M

|f (x, un)un|
a(x)

dvg

≤ c1

∫

M

|un|N
a(x)

dvg + c2

∫

M

|un|Φ(α0|un| N
N–1 )

a(x)
dvg
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≤ c1

∫

M

|un|N
a(x)

dvg + c2

(∫

M

Φ(qα0|un| N
N–1 )

a(x)
dvg

) 1
q
(∫

M

|un|q′

a(x)
dvg

) 1
q′

≤ c1

∫

M

|un|N
a(x)

dvg + C
(∫

M

|un|q′

a(x)
dvg

) 1
q′

→ 0,

here we used Lemma 2.2 in the last step. From I ′(un)un → 0, we have

lim
n→∞‖un‖N

E = 0, (4.2)

which is a contradiction with (4.1), so u is nonzero.
Now, we will show the existence of positive ground state solution for (Pa). Setting

m = inf
u∈Λ

I(u), Λ :=
{

u ∈ E \ {0} : I ′(u)u = 0
}

.

Let c be the mountain-pass level, obviously m ≤ c.
On the other hand, let u ∈ Λ, then u > 0. In fact, denote u– := min{u, 0}, from I ′(u)u– = 0,

we have ‖u–‖ = 0, thus u ≥ 0 on M, from I(u) = c > 0, we know u is positive on M. Define
h : (0, +∞) →R by h(t) = I(tu). We see that h is differentiable and

h′(t) = I ′(tu)u = tN–1‖u‖N –
∫

M

f (x, tu)u
a(x)

dvg , ∀t > 0.

From I ′(u)u = 0, we get

h′(t) = I ′(tu)u – tN–1I ′(u)u,

so

h′(t) = tN–1
∫

M

(
f (x, u)
uN–1 –

f (x, tu)
(tu)N–1

)
uN

a(x)
dvg , ∀t > 0.

By (f6) and u > 0, we conclude that h′(t) > 0 for 0 < t < 1 and h′(t) < 0 for t > 1, since h′(1) =
0, thus,

I(u) = max
t≥0

I(tu).

Now, define γ : [0, 1] → E, γ (t) = tt0u, where t0 is a real number which satisfies I(t0u) < 0,
we have γ ∈ Γ , and therefore

c ≤ max
t∈[0,1]

I
(
γ (t)

) ≤ max
t≥0

I(tu) = I(u).

Since u ∈ Λ is arbitrary, we have c ≤ m, thus c = m. This completes the proof of Theo-
rem 1.1. �

5 The nontrivial solution of perturbation problem
In this section, we consider the following perturbation problem:

–divg
(|∇gu|N–2∇gu

)
+ V (x)|u|N–2u =

f (x, u)
a(x)

+ εh(x) in M (P)

where ε > 0, h ∈ E∗, h ≥ 0 and h �≡ 0.
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We say that u ∈ E is a weak solution of problem (P) if for all φ ∈ E,

∫

M

(|∇gu|N–2∇gu∇φ + V (x)|u|N–2uφ
)

dvg –
∫

M

f (x, u)
a(x)

φ dvg – ε

∫

RN
h(x)φ dvg = 0.

Define the functional Iε : E →R by

Iε(u) =
1
N

‖u‖N
E –

∫

RN

F(x, u)
a(x)

dvg – ε

∫

M
h(x)u dvg , (5.1)

where F(x, t) =
∫ t

0 f (x, s) ds. I is well defined and I ∈ C1(E,R) thanks to the singular
Trudinger–Moser inequality. A straightforward calculation shows that

〈
I ′(u),φ

〉
=

∫

M

(|∇gu|N–2∇gu∇gφ + V (x)|u|N–2uφ
)

dvg

–
∫

M

f (x, u)
a(x)

φ dvg – ε

∫

M
h(x)φ dvg , (5.2)

for all u,φ ∈ E, hence, a critical point of (5.2) is a weak solution of (P).
Next, we will prove Theorem 1.3, one solution is obtained by using the mountain-pass

theorem without Cerami condition.

Proof of Theorem 1.3 As in previous sections, it is similar to the first part of Theorem 1.1,
Iε satisfies the geometry condition of the mountain-pass theorem; i.e., Iε ∈ C1(E,R), there
exists ε1 > 0 such that when 0 < ε < ε1, Iε(u) ≥ δε > 0 for ‖u‖E = rε ; Iε(e) < 0 for some e ∈ E
with ‖e‖E > rε , where rε can be further chosen such that rε → 0 as ε → 0. Then, by the
mountain-pass theorem without the Cerami condition, we get a (C)c sequence {un} ⊂ E;
i.e.,

Iε(un) → cε and
(
1 + ‖un‖E

)∥∥I ′
ε(un)

∥
∥

E∗ → 0 as n → ∞ (5.3)

where

cε = inf
γ∈Γ

max
t∈[0,1]

Iε
(
γ (t)

) ≥ δε

is the min–max value of Iε . By a similar argument to Lemma 3.4 to Iε , there exists a sub-
sequence of {un} that is bounded and its weak limit u is a critical point of the functional
Iε . This completes the proof of Theorem 1.3. �
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