期刊论文详细信息
Journal of inequalities and applications
Lasota–Opial type conditions for periodic problem for systems of higher-order functional differential equations
article
Sulkhan Mukhigulashvili1  Bedřich Půža2 
[1] Institute of mathematics of the Czech Academy of Sciences;Faculty of Business and Management, Brno University of Technology
关键词: Higher-order systems;    Periodic problem;    Functional differential equations;    Unique solvability;   
DOI  :  10.1186/s13660-020-02414-9
学科分类:电力
来源: SpringerOpen
PDF
【 摘 要 】

In the paper we study the question of solvability and unique solvability of systems of the higher-order functional differential equations $$ u_{i}^{(m_{i})}(t)=\ell _{i}(u_{i+1}) (t)+ q_{i}(t) \quad (i= \overline{1, n}) \text{ for } t\in I:=[a, b] $$ and $$ u_{i}^{(m_{i})} (t)=F_{i}(u) (t)+q_{0i}(t) \quad (i = \overline{1, n}) \text{ for } t\in I $$ under the periodic boundary conditions $$ u_{i}^{(j)}(b)-u_{i}^{(j)}(a)=c_{ij} \quad (i=\overline{1, n},j= \overline{0, m_{i}-1}), $$ where $u_{n+1}=u_{1} $, $m_{i}\geq 1$, $n\geq 2 $, $c_{ij}\in R$, $q_{i},q_{0i}\in L(I; R)$, $\ell _{i}:C^{0}_{1}(I; R)\to L(I; R)$ are monotone operators and $F_{i}$ are the local Caratheodory’s class operators. In the paper in some sense optimal conditions that guarantee the unique solvability of the linear problem are obtained, and on the basis of these results the optimal conditions of the solvability and unique solvability for the nonlinear problem are proved.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202106300003370ZK.pdf 1416KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:1次