期刊论文详细信息
Journal of inequalities and applications
On the distance α -spectral radius of a connected graph
article
Haiyan Guo1  Bo Zhou1 
[1] School of Mathematical Sciences, South China Normal University
关键词: Distance spectral radius;    Distance signless Laplacian spectral radius;    Local graft transformation;    Extremal graph;   
DOI  :  10.1186/s13660-020-02427-4
学科分类:电力
来源: SpringerOpen
PDF
【 摘 要 】

For a connected graph G and $\alpha \in [0,1)$, the distance α-spectral radius of G is the spectral radius of the matrix $D_{\alpha }(G)$ defined as $D_{\alpha }(G)=\alpha T(G)+(1-\alpha )D(G)$, where $T(G)$ is a diagonal matrix of vertex transmissions of G and $D(G)$ is the distance matrix of G. We give bounds for the distance α-spectral radius, especially for graphs that are not transmission regular, propose local graft transformations that decrease or increase the distance α-spectral radius, and determine the graphs that minimize and maximize the distance α-spectral radius among several families of graphs.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202106300003364ZK.pdf 1437KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:0次