期刊论文详细信息
Journal of inequalities and applications | |
Interchanging a limit and an integral: necessary and sufficient conditions | |
article | |
Takashi Kamihigashi1  | |
[1] Center for Computational Social Science, Kobe University | |
关键词: σ -finite measure space; Integrable functions; Vitali convergence theorem; Uniform integrability; | |
DOI : 10.1186/s13660-020-02502-w | |
学科分类:电力 | |
来源: SpringerOpen | |
【 摘 要 】
Let $\{f_{n}\}_{n \in \mathbb {N}}$ be a sequence of integrable functions on a σ-finite measure space $(\Omega, \mathscr {F}, \mu )$ . Suppose that the pointwise limit $\lim_{n \uparrow \infty } f_{n}$ exists μ-a.e. and is integrable. In this setting we provide necessary and sufficient conditions for the following equality to hold: $$ \lim_{n \uparrow \infty } \int f_{n} \, d\mu = \int \lim_{n \uparrow \infty } f_{n} \, d\mu. $$.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202106300003283ZK.pdf | 1390KB | download |