期刊论文详细信息
Journal of inequalities and applications
Interchanging a limit and an integral: necessary and sufficient conditions
article
Takashi Kamihigashi1 
[1] Center for Computational Social Science, Kobe University
关键词: σ -finite measure space;    Integrable functions;    Vitali convergence theorem;    Uniform integrability;   
DOI  :  10.1186/s13660-020-02502-w
学科分类:电力
来源: SpringerOpen
PDF
【 摘 要 】

Let $\{f_{n}\}_{n \in \mathbb {N}}$ be a sequence of integrable functions on a σ-finite measure space $(\Omega, \mathscr {F}, \mu )$ . Suppose that the pointwise limit $\lim_{n \uparrow \infty } f_{n}$ exists μ-a.e. and is integrable. In this setting we provide necessary and sufficient conditions for the following equality to hold: $$ \lim_{n \uparrow \infty } \int f_{n} \, d\mu = \int \lim_{n \uparrow \infty } f_{n} \, d\mu. $$.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202106300003283ZK.pdf 1390KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:1次