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Abstract
Let {fn}n∈N be a sequence of integrable functions on a σ -finite measure space
(�,F ,μ). Suppose that the pointwise limit limn↑∞ fn exists μ-a.e. and is integrable. In
this setting we provide necessary and sufficient conditions for the following equality
to hold:

lim
n↑∞

∫
fn dμ =

∫
lim
n↑∞ fn dμ.
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1 Introduction
Let (�,F ,μ) be a measure space. Let {fn}n∈N be a sequence of integrable functions f : � →
R ≡ [–∞,∞] such that the pointwise limit limn↑∞ fn exists μ-a.e. (μ-almost everywhere)
and is integrable. One often wishes to show that

lim
n↑∞

∫
fn dμ =

∫
lim
n↑∞ fn dμ. (1.1)

In other words, one often wishes to interchange the limit limn↑∞ and the integral
∫

. Var-
ious sufficient conditions for (1.1) are known, but only a small number of necessary and
sufficient conditions are known in certain special cases. To our knowledge, no nontriv-
ial necessary and sufficient condition for (1.1) applicable to the case that μ is σ -finite is
available in the literature.

One of the best known sufficient conditions for (1.1) is that there exists an integrable
function g such that |fn| ≤ g for all n ∈ N. Under this condition, (1.1) holds by the domi-
nated convergence theorem (e.g., [8, p. 89]). The condition is generalized in [9, p. 315] to
the condition that there exist sequences {f

n
} and {f n} such that f

n
≤ fn ≤ f n for all n ∈ N

and such that both {f
n
} and {f n} satisfy (1.1); the same result is shown in [5] and [1, p. 134].

The condition is also necessary for (1.1) in a trivial way since it holds with f
n

= f n = fn un-
der (1.1).
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It is shown in [7] that (1.1) holds if � ⊂R, μ is the Lebesgue measure, and the functions
fn and limn↑∞ fn are probability densities on R. More generally, if μ is σ -finite and the func-
tions are nonnegative, a version of the Vitali convergence theorem provides a necessary
and sufficient condition for (1.1) (see [8, p. 165]). In particular, uniform integrability of {fn}
(defined in Sect. 4) is equivalent to (1.1) provided that μ is σ -finite and that fn ≥ 0 for all
n ∈N. In the absence of this nonnegativity requirement, however, uniform integrability is
only sufficient for (1.1), as shown in Sects. 4 and 5.

In the case that μ is finite, some necessary and sufficient conditions for (1.1) are given
in [2, 3]. Those conditions are closely related, but not equivalent, to uniform integrability.
Nevertheless, they are rarely mentioned in the current literature. We review one of the
most general conditions in this case in Sect. 4.

In this paper we provide nontrivial necessary and sufficient conditions for (1.1) only un-
der the assumption that μ is σ -finite. We demonstrate by example that our conditions are
strictly weaker than uniform integrability. We express them using the concept of a σ -finite
exhausting sequence, which is introduced in [4] to generalize Fatou’s lemma. A σ -finite ex-
hausting sequence is an increasing sequence of measurable sets of finite measure such that
the complement of its entire union has measure 0. The basic idea of our conditions is to
find a σ -finite exhausting sequence such that (1.1) can be verified on each of the sets in
the sequence and such that the sequence of integrals outside these sets can be controlled
asymptotically.

The rest of the paper is organized as follows. In the next section we present our main
results, which we prove in Sect. 3. In Sect. 4 we review some of the known results on (1.1)
mentioned above. In Sect. 5 we present a simple example to which the known results do
not apply, but our results easily apply.

2 Main results
Throughout the paper, we let (�,F ,μ) be a measure space. Let L be the set of measur-
able functions f : � → R (with R equipped with the Borel algebra). Let L1 be the set of
integrable functions in L. Let L1

+ = {f ∈L1 : f ≥ 0}.
We say that a sequence {Ai}i∈N in F is exhausting if

(i) ∀i ∈ N, Ai ⊂ Ai+1, (ii) μ

(
� \

⋃
i∈N

Ai

)
= 0. (2.1)

As in [4], we say that a sequence {Ai}i∈N in F is a σ -finite exhausting sequence if it is
exhausting and

∀i ∈N, μ(Ai) < ∞. (2.2)

It is easy to see that μ is σ -finite if and only if there exists a σ -finite exhausting sequence.
Thus whenever μ is σ -finite, we have at least one σ -finite exhausting sequence.

In what follows, by “fn → f ,” we mean “fn → f as n ↑ ∞.” We are ready to state our main
results, which we prove in the next section.

Theorem 2.1 Suppose that μ is σ -finite. Let {fn}n∈N be a sequence in L1 such that fn → f
μ-a.e. for some f ∈ L1. Then (1.1) holds if and only if there exists a σ -finite exhausting
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sequence {Ai}i∈N ⊂ F such that

∀i ∈N, lim
n↑∞ sup

ω∈Ai

∣∣fn(ω) – f (ω)
∣∣ < ∞, (2.3)

lim
i↑∞

lim
n↑∞

∣∣∣∣
∫

�\Ai

fn dμ

∣∣∣∣ = 0. (2.4)

A simple sufficient condition for (2.3) is uniform convergence on each Ai; see (2.5) below.
Condition (2.4) is somewhat similar to some of the conditions (such as uniform integra-
bility) used in the known results reviewed in Sect. 4; see (4.3) and (4.5).

Theorem 2.2 Under the hypotheses of Theorem 2.1, (1.1) holds if and only if any σ -finite
exhausting sequence {Ai}i∈N ⊂ F satisfying (2.3) also satisfies (2.4).

On the one hand, by Theorem 2.1, (1.1) can be established by constructing only one
σ -finite exhausting sequence satisfying both (2.3) and (2.4). On the other hand, by Theo-
rem 2.2, (1.1) can be disproved by constructing only one σ -finite exhausting sequence as
well:

Corollary 2.1 Under the hypotheses of Theorem 2.1, (1.1) does not hold if there exists a
σ -finite exhausting sequence {Ai}i∈N ⊂ F satisfying (2.3) but violating (2.4).

The following result shows that there always exists a σ -finite exhausting sequence sat-
isfying (2.3).

Lemma 2.1 Under the hypotheses of Theorem 2.1, there exists a σ -finite exhausting se-
quence {Ai}i∈N ⊂ F such that

∀i ∈N, fn → f uniformly on Ai. (2.5)

Hence there exists a σ -finite exhausting sequence {Ai}i∈N ⊂ F satisfying (2.3).

Proof Since μ is σ -finite, there is a σ -finite exhausting sequence {Bi}i∈N ⊂ F . Let {εi}i∈N
be a sequence in (0,∞) with limi↑∞ εi = 0. Let i ∈ N. Recall that fn → f μ-a.e.; thus by
Egorov’s theorem there exists Ei ∈ F such that Ei ⊂ Bi, μ(Bi \ Ei) < εi, and fn → f uni-
formly on Ei.

For each i ∈ N, define

Ai =
i⋃

j=1

Ej ⊂ Bi. (2.6)

Then fn → f uniformly on Ai. Since this is true for any i ∈N, we obtain (2.5). By construc-
tion, we have

∀i ∈N, Ai ⊂ Ai+1, μ(Ai) < ∞, Ai ⊂ Bi, (2.7)

lim
i↑∞μ(Bi \ Ai) = 0. (2.8)
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Hence it follows by [4, Lemma 8.4] that {Ai} is a σ -finite exhausting sequence. Finally, the
second conclusion holds since (2.5) implies (2.3). �

Lemma 2.1 is similar to Lusin’s version of Egorov’s theorem [6, p. 19], which shows that
there exists a sequence {Ai}i∈N ⊂ F such that μ(� \ ⋃

i∈N Ai) = 0 and such that fn → f
uniformly on Ai for each i ∈N. Our result differs in that it explicitly shows that μ(Ai) < ∞
for each i ∈N.

By Lemma 2.1, there exists a σ -finite exhausting sequence satisfying (2.3). Given such a
sequence, (1.1) is equivalent to (2.4):

Corollary 2.2 Under the hypotheses of Theorem 2.1, let {Ai}i∈N ⊂ F be a σ -finite exhaust-
ing sequence satisfying (2.3) (which exists by Lemma 2.1). Then (1.1) is equivalent to (2.4).

Proof That (2.4) implies (1.1) is immediate from Theorem 2.1. The reverse implication
follows from Theorem 2.2. �

3 Proof of Theorems 2.1 and 2.2
To simplify our arguments, we define

� =
{{fn}n∈N ⊂L1 : ∃f ∈L1, fn → f μ-a.e.

}
. (3.1)

Whenever a sequence {fn} from � is given, we let f be the μ-a.e. limit of {fn} given in (3.1).
With this convention, (1.1) can be written as

lim
n↑∞

∫
fn dμ =

∫
f dμ. (3.2)

We also define

� =
{{fn}n∈N ∈ � : {fn} satisfies (3.2)

}
. (3.3)

We prove Theorems 2.1 and 2.2 by showing that the following four conditions are equiv-
alent.

Condition 3.1 {fn} ∈ � .

Condition 3.2 There exists an exhausting sequence {Ai}i∈N ⊂ F satisfying (2.4) such that

∀i ∈N, lim
n↑∞

∫
Ai

fn dμ =
∫

Ai

f dμ. (3.4)

Condition 3.3 There exists a σ -finite exhausting sequence {Ai}i∈N ⊂ F satisfying (2.3)
and (2.4).

Condition 3.4 Any σ -finite exhausting sequence {Ai}i∈N ⊂ F satisfying (2.3) also satis-
fies (2.4).

Note that Conditions 3.3 and 3.4 are the “if and only if” conditions in Theorems 2.1 and
2.2, respectively. The following result, which does not assume that μ is σ -finite, shows that
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Conditions 3.1 and 3.2 are equivalent, but Condition 3.2 is necessary for Condition 3.1 only
in a trivial way.

Lemma 3.1 Conditions 3.1 and 3.2 are equivalent.

Proof Condition 3.1 implies Condition 3.2 with Ai = � for all i ∈ N. Conversely, assume
Condition 3.2. Let {Ai}i∈N be an exhausting sequence in F satisfying (2.4) and (3.4). For
any i, n ∈ N, we have

∫
fn dμ =

∫
Ai

fn dμ +
∫

�\Ai

fn dμ (3.5)

≤
∫

Ai

fn dμ +
∣∣∣∣
∫

�\Ai

fn dμ

∣∣∣∣. (3.6)

Applying limn↑∞ and using (3.4), we have

lim
n↑∞

∫
fn dμ ≤

∫
Ai

f dμ + lim
n↑∞

∣∣∣∣
∫

�\Ai

fn dμ

∣∣∣∣. (3.7)

Applying limi↑∞ to the right-hand side and recalling that f is integrable, we obtain

lim
n↑∞

∫
fn dμ ≤ lim

i↑∞

∫
Ai

f dμ + lim
i↑∞

lim
n↑∞

∣∣∣∣
∫

�\Ai

fn dμ

∣∣∣∣ =
∫

f dμ, (3.8)

where the equality holds by integrability of f and (2.4).
Note from (3.5) that

∫
fn dμ ≥

∫
Ai

fn dμ –
∣∣∣∣
∫

�\Ai

fn dμ

∣∣∣∣. (3.9)

Applying limn↑∞ and then limi↑∞, and using (2.4), we obtain

lim
n↑∞

∫
fn dμ ≥

∫
f dμ. (3.10)

This together with (3.8) implies Condition 3.1. �

It is easy to see that Theorems 2.1 and 2.2 follow from the following result.

Theorem 3.1 Suppose that μ is σ -finite. Then Conditions 3.1–3.4 are equivalent.

Proof We show this result by verifying the following chain of implications:

Cond. 3.1 ⇐ Cond. 3.2 ⇐ Cond. 3.3

⇐ Cond. 3.4 ⇐ Cond. 3.1.
(3.11)

Lemma 3.1 shows that Condition 3.2 implies Condition 3.1. To see that Condition 3.3
implies Condition 3.2, fix i ∈ N for the moment. Then (2.3) implies that there exists η > 0
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such that

∀ω ∈ Ai, f (ω) – η < lim
n↑∞

fn(ω) ≤ lim
n↑∞ fn(ω) < f (ω) + η. (3.12)

Thus by the dominated convergence theorem, we obtain

(2.2) and (2.3) ⇒ (3.4). (3.13)

Hence Condition 3.3 implies Condition 3.2. By Lemma 2.1, there exists a σ -finite exhaust-
ing sequence {Ai}i∈N ⊂ F satisfying (2.3). Thus Condition 3.4 implies Condition 3.3. We
have verified the first three implications in (3.11). It remains to show the last implication.

To this end, assume Condition 3.1, which implies (3.2). Let {Ai}i∈N be any σ -finite ex-
hausting sequence satisfying (2.3). It suffices to verify (2.4). Applying limn↑∞ to (3.5) and
recalling (3.13), we see that

lim
n↑∞

∫
fn dμ =

∫
Ai

f dμ + lim
n↑∞

∫
�\Ai

fn dμ, (3.14)

where the limit on the right-hand side exists since the limit on the left-hand side exists by
(3.2). Since the left-hand side of (3.14) does not depend on i, we can apply limi↑∞ to the
right-hand side and use the integrability of f to get

lim
n↑∞

∫
fn dμ =

∫
f dμ + lim

i↑∞ lim
n↑∞

∫
�\Ai

fn dμ. (3.15)

Hence by (3.2) we have

lim
i↑∞ lim

n↑∞

∫
�\Ai

fn dμ = 0. (3.16)

Therefore

0 =
∣∣∣∣limi↑∞ lim

n↑∞

∫
�\Ai

fn dμ

∣∣∣∣ = lim
i↑∞ lim

n↑∞

∣∣∣∣
∫

�\Ai

fn dμ

∣∣∣∣. (3.17)

Thus (2.4) follows. This completes the proof. �

4 Known results
In this section we review some of the known results on (1.1) mentioned in Sect. 1.
Throughout this section we take a sequence {fn}n∈N ⊂ L as given and assume the follow-
ing.

Assumption 4.1 {fn}n∈N ∈ �.

Essentially following [3], for i ∈N and η > 0, define

S(i,η) =
{
ω ∈ � : ∀n ≥ i,

∣∣fn(ω) – f (ω)
∣∣ ≤ η

}
, (4.1)

C(i,η) = � \ S(i,η). (4.2)
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In [3, p. 434] the following result is shown apparently under the implicit assumption that
� is a subset of R or Rn of finite Lebesgue measure.

Theorem 4.1 Suppose that μ is finite. Then {fn} ∈ � if and only if

∀η > 0, lim
i↑∞ sup

n≥i

∣∣∣∣
∫

C(i,η)
fn dμ

∣∣∣∣ = 0. (4.3)

Proof See [3, I]. �

The following result is a generalization of the dominated convergence theorem due to
[9, p. 315].

Theorem 4.2 {fn} ∈ � if and only if there exist {f
n
}n∈N, {f n}n∈N ⊂ � such that

∀n ∈N, f
n
≤ fn ≤ f n μ-a.e. (4.4)

Proof The “only if” part trivially holds by setting f
n

= f n = f for all n ∈ N. For the “if” part,
see [5] or [1, p. 134]. �

A sequence {fn}n∈N in L is called uniformly integrable ([8, p. 163]) if

inf
h∈L1

+
sup
n∈N

∫
|fn|≥h

|fn|dμ = 0. (4.5)

See [8, Theorem 16.8] for various conditions equivalent to (4.5). The following result
is an immediate implication of a version of the Vitali convergence theorem [8, Theo-
rem 16.4].

Theorem 4.3 Suppose that μ is σ -finite, and that {fn} ⊂ L1
+. Then {fn} ∈ � if and only if

{fn} is uniformly integrable.

Proof This follows from [8, Lemma 16.4, Theorem 16.6] with p = 1. �

Without the assumption that {fn} ⊂ L1
+, uniform integrability is still sufficient for (1.1),

as shown in the next result. We prove it here for completeness; we do not claim originality.

Theorem 4.4 Suppose that μ is σ -finite. If {fn} is uniformly integrable, then {fn} ∈ � .

Proof Suppose that {fn} is uniformly integrable. Then {|fn|} is uniformly integrable, and
{|fn|} ∈ � by Theorem 4.3. Since –|fn| ≤ fn ≤ |fn| for all n ∈ N, it follows by Theorem 4.2
that {fn} ∈ � . �

In the next section we show by example that uniform integrability is not necessary for
(1.1).
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5 A simple example
In this section we present a simple example that satisfies (1.1) but violates (4.3) as well as
uniform integrability. Let � = R+. Let F be the σ -algebra of Lebesgue measurable subsets
of �. Let μ be the Lebesgue measure restricted to F . For n ∈N, define fn : � →R by

fn(ω) =

⎧⎪⎪⎨
⎪⎪⎩

–1/n if ω ∈ [n, n + n2),

n if ω ∈ [n + n2, n + n2 + 1),

0 otherwise.

(5.1)

Note that fn → 0 pointwise and that
∫

fn dμ = 0 for all n ∈N. Thus (1.1) holds.
Since μ is not finite here, Theorem 4.1 simply does not apply. Furthermore, the “if and

only if” condition in the theorem, (4.3), does not hold either, as we demonstrate here. For
this purpose, let η > 0, and let i ∈N be such that 1/i < η < i. Then

C(i,η) =
∞⋃
j=i

[
j + j2, j + j2 + 1

)
. (5.2)

Since
∫

C(i,η) fn dμ = n for any n ≥ i, we have

sup
n≥i

∣∣∣∣
∫

C(i,η)
fn dμ

∣∣∣∣ = ∞. (5.3)

Hence the equality in (4.3) never holds for any η > 0.
Let us now turn to the uniform integrability condition (4.5). Let h ∈ L1

+ and n ∈ N. We
have

∫
|fn|≥h

|fn|dμ ≥
∫ n+n2+1

n+n2
1
{

n ≥ h(ω)
}

n dω (5.4)

= n
(

1 –
∫ n+n2+1

n+n2
1
{

h(ω) > n
}

dω

)
, (5.5)

where 1{·} is the indicator function. Note that h(ω) ≥ 1 if h(ω) > n (≥ 1), and that h(ω) ≥ 0
otherwise; thus 1{h(ω) > n} ≤ h(ω) for all ω ∈ �. Hence

lim
n↑∞

∫ n+n2+1

n+n2
1
{

h(ω) > n
}

dω ≤ lim
n↑∞

∫ n+n2+1

n+n2
h(ω) dω = 0, (5.6)

where the equality holds by integrability of h. From (5.4)–(5.6), we have

sup
n∈N

∫
|fn|≥h

|fn|dμ = ∞. (5.7)

Since this is true for any h ∈L1
+, it follows that {fn} is not uniformly integrable.

To see that our results apply even to this example, let Ai = [0, i) for i ∈ N. Then {Ai}i∈N
is a σ -finite exhausting sequence. Note that for each i ∈ N, we have fn = f = 0 on Ai for all
n ≥ i. Thus both (2.3) and (3.4) trivially hold. For any i ∈ N, we have

∀n ≥ i,
∫

�\Ai

fn dμ =
∫

[i,∞)
fn dμ = 0. (5.8)
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Hence (2.4) also holds. It follows that both Conditions 3.2 and 3.3 hold, so that Theo-
rems 2.1 and 3.1 apply here.
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