期刊论文详细信息
Symmetry Integrability and Geometry-Methods and Applications
Algebraic Properties of Curvature Operators in Lorentzian Manifolds with Large Isometry Groups
article
Giovanni Calvaruso1  Eduardo García-Río2 
[1] Dipartimento di Matematica E. De Giorgi, Università del Salento;Faculty of Mathematics, University of Santiago de Compostela
关键词: Lorentzian manifolds;    skew-symmetric curvature operator;    Jacobi;    Szab´o and skew-symmetric curvature operators;    commuting curvature operators;    IP manifolds;    Cspaces and P-spaces;   
DOI  :  10.3842/SIGMA.2010.005
来源: National Academy of Science of Ukraine
PDF
【 摘 要 】

Together with spaces of constant sectional curvature and products of a real line with a manifold of constant curvature, the socalled Egorov spaces and ε- spaces exhaust the class of n -dimensional Lorentzian manifolds admitting a group of isometries of dimension at least ½ n ( n −1)+1, for almost all values of n [Patrangenaru V., Geom. Dedicata 102 (2003), 25-33]. We shall prove that the curvature tensor of these spaces satisfy several interesting algebraic properties. In particular, we will show that Egorov spaces are Ivanov-Petrova manifolds, curvature-Ricci commuting (indeed, semi-symmetric) and P -spaces, and that ε-spaces are Ivanov-Petrova and curvature-curvature commuting manifolds.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO202106300001800ZK.pdf 206KB PDF download
  文献评价指标  
  下载次数:7次 浏览次数:1次