期刊论文详细信息
Symmetry Integrability and Geometry-Methods and Applications
Realization of $U_q({\mathfrak{sp}}_{2n})$ within the Differential Algebra on Quantum Symplectic Space
article
Jiao Zhang1  Naihong Hu2 
[1] Department of Mathematics, Shanghai University, Baoshan Campus;Department of Mathematics, Shanghai Key Laboratory of Pure Mathematics and Mathematical Practice, East China Normal University, Minhang Campus
关键词: quantum symplectic group;    quantum symplectic space;    quantum dif ferential operators;    dif ferential calculus;    module algebra;   
DOI  :  10.3842/SIGMA.2017.084
来源: National Academy of Science of Ukraine
PDF
【 摘 要 】

We realize the Hopf algebra $U_q({\mathfrak {sp}}_{2n})$ as an algebra of quantum differential operators on the quantum symplectic space $\mathcal{X}(f_s;\mathrm{R})$ and prove that $\mathcal{X}(f_s;\mathrm{R})$ is a $U_q({\mathfrak{sp}}_{2n})$-module algebra whose irreducible summands are just its homogeneous subspaces. We give a coherence realization for all the positive root vectors under the actions of Lusztig's braid automorphisms of $U_q({\mathfrak {sp}}_{2n})$.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO202106300000979ZK.pdf 459KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次