Symmetry Integrability and Geometry-Methods and Applications | |
Parallels between Moduli of Quiver Representations and Vector Bundles over Curves | |
article | |
Victoria Hoskins1  | |
[1] Freie Universität Berlin | |
关键词: algebraic moduli problems; geometric invariant theory; representation theory of quivers; vector bundles and Higgs bundles on curves; | |
DOI : 10.3842/SIGMA.2018.127 | |
来源: National Academy of Science of Ukraine | |
【 摘 要 】
This is a review article exploring similarities between moduli of quiver representations and moduli of vector bundles over a smooth projective curve. After describing the basic properties of these moduli problems and constructions of their moduli spaces via geometric invariant theory and symplectic reduction, we introduce their hyperkähler analogues: moduli spaces of representations of a doubled quiver satisfying certain relations imposed by a moment map and moduli spaces of Higgs bundles. Finally, we survey a surprising link between the counts of absolutely indecomposable objects over finite fields and the Betti cohomology of these (complex) hyperkähler moduli spaces due to work of Crawley-Boevey and Van den Bergh and Hausel, Letellier and Rodriguez-Villegas in the quiver setting, and work of Schiffmann in the bundle setting.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202106300000837ZK.pdf | 685KB | download |