期刊论文详细信息
Proceedings Mathematical Sciences
Harder–Narasimhan filtration for rank 2 tensors and stable coverings
ALFONSO ZAMORA1 
[1] Instituto de Ciencias Matemáticas (CSIC-UAM-UCM-UCM), Nicolás Cabrera -, Campus Cantoblanco UAM, 0 Madrid, Spain$$
关键词: Harder–Narasimhan filtration;    geometric invariant theory;    tensors;    curve coverings;    moduli space;    Kempf;   
DOI  :  
学科分类:数学(综合)
来源: Indian Academy of Sciences
PDF
【 摘 要 】

We construct a Harder--Narasimhan filtration for rank 2 tensors, where there does not exist any such notion {/it a priori,} as coming from a GIT notion of maximal unstability. The filtration associated to the 1-parameter subgroup of Kempf giving the maximal way to destabilize, in the GIT sense, a point in the parameter space of the construction of the moduli space of rank 2 tensors over a smooth projective complex variety, does not depend on a certain integer used in the construction of the moduli space, for large values of the integer. Hence, this filtration is unique and we define the Harder--Narasimhan filtration for rank 2 tensors as this unique filtration coming from GIT. Symmetric rank 2 tensors over smooth projective complex curves define curve coverings lying on a ruled surface, hence we can translate the stability condition to define stable coverings and characterize the Harder--Narasimhan filtration in terms of intersection theory.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912040507201ZK.pdf 3256KB PDF download
  文献评价指标  
  下载次数:10次 浏览次数:11次