期刊论文详细信息
Proceedings of the Japan Academy, Series A. Mathematical Sciences
Collapsing K3 surfaces and Moduli compactification
article
Yuji Odaka1  Yoshiki Oshima2 
[1] Department of Mathematics, Kyoto University;Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University
关键词: Locally symmetric spaces;    Satake compactification;    Ka¨hler-Einstein metrics;    K3 surfaces;    Moduli;    tropical geometry.;   
DOI  :  10.3792/pjaa.94.81
学科分类:数学(综合)
来源: Japan Academy
PDF
【 摘 要 】

This note is a summary of our work [OO], which provides an explicit and global moduli-theoretic framework for the collapsing of Ricci-flat Kähler metrics and we use it to study especially the K3 surfaces case. For instance, it allows us to discuss their Gromov-Hausdorff limits along any sequences, which are even not necessarily “maximally degenerating”. Our results also give a proof of Kontsevich-Soibelman [KS06,Conjecture 1] (cf., [GW00, Conjecture 6.2]) in the case of K3 surfaces as a byproduct.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO202106300000301ZK.pdf 121KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次