期刊论文详细信息
Journal of Algebra Combinatorics Discrete Structures and Applications | |
Codes over $\mathbb{Z}_{p}[u]/{\langle u^r \rangle}\times\mathbb{Z}_{p}[u]/{\langle u^s \rangle}$ | |
article | |
Ismail Aydogdu1  | |
[1] Department of Mathematics, Yildiz Technical University | |
关键词: Linear codes; Self-dual codes; Z_2Z_2[u]-linear codes; Z_p[u^r; u^s ]-linear codes; | |
DOI : 10.13069/jacodesmath.514339 | |
学科分类:社会科学、人文和艺术(综合) | |
来源: Yildiz Technical University | |
【 摘 要 】
In this paper we generalize Z2Z2[u]-linear codes to codes over Zp[u]/huri × Zp[u]/husi where p is aprime number and ur = 0 = us. We will call these family of codes as Zp[ur, us]-linear codes whichare actually special submodules. We determine the standard forms of the generator and parity-checkmatrices of these codes. Furthermore, for the special case p = 2, we define a Gray map to explore thebinary images of Z2[ur, us]-linear codes. Finally, we study the structure of self-dual Z2[u2, u3]-linearcodes and present some examples.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202105240003902ZK.pdf | 576KB | download |