期刊论文详细信息
Brazilian Journal of Infectious Diseases
Immune effector mechanisms of the nitric oxide pathway in malaria: cytotoxicity versus cytoprotection
Hossein Nahrevanian1 
[1] ,Department of Parasitology Pasteur Institute of Iran
关键词: iNOS;    malaria;    nitric oxide;    NO;    RNI;   
DOI  :  10.1590/S1413-86702006000400014
来源: SciELO
PDF
【 摘 要 】

Nitric oxide (NO) is thought to be an important mediator and critical signaling molecule for malaria immunopathology; it is also a target for therapy and for vaccine. Inducible nitric oxide synthase (iNOS) is synthesized by a number of cell types under inflammatory conditions. The most relevant known triggers for its expression are endotoxins and cytokines. To date, there have been conflicting reports concerning the clinical significance of NO in malaria. Some researchers have proposed that NO contributes to the development of severe and complicated malaria, while others have argued that NO has a protective role. Infection with parasites resistant to the microbicidal action of NO may result in high levels of NO being generated, which could then damage the host, instead of controlling parasitemia. Consequently, the host-parasite interaction is a determining factor for whether the parasite is capable of stimulating NO production; the role of NO in resistance to malaria appears to be strain specific. It is known that NO and/or its related molecules are involved in malaria, but their involvement is not independent of other immune events. NO is an important, but possibly not an essential contributor to the control of acute-phase malaria infection. The protective immune responses against malaria parasite are multifactorial; however, they necessarily involve final effector molecules, including NO, iNOS and RNI.

【 授权许可】

CC BY-NC-ND   
 All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License

【 预 览 】
附件列表
Files Size Format View
RO202005130143817ZK.pdf 66KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:1次