期刊论文详细信息
Brazilian Dental Journal
Degradation of Resin Composites in a Simulated Deep Cavity
Luana Gonçalves1  Cristiane Mariote Amaral1  Laiza Tatiana Poskus1  José Guilherme Antunes Guimarães1  Eduardo Moreira Da Silva1 
关键词: resin composites;    degree of conversion;    sorption;    solubility.;   
DOI  :  10.1590/0103-6440201300089
来源: SciELO
PDF
【 摘 要 】

The aim of this study was to analyze the sorption and solubility of a nanofilled (Filtek Z350) and a midifilled (Filtek P60) resin composite in oral environment-like substances, in a simulated deep cavity. A cylindrical cavity prepared in a bovine incisor root was incrementally filled with resin composites. The obtained resin composite cylinders were cut perpendicularly to the axis to obtain 1-mm-thick discs that were divided into fifteen groups (n=5) according to depth (1, 2, 3, 4 and 5 mm) and immersion media (distilled water - DW, artificial saliva - AS and lactic acid - LA). The sorption and solubility were calculated based on ISO 4049:2000. Additionally, the degree of conversion (DC%) was calculated by FT-IR spectroscopy. Data were analyzed using multifactor analysis of variance (MANOVA) followed by Tukey's HSD post-hoc test and linear regression analysis (a=0.05). The DC% was higher for the midifilled resin composite and was negatively influenced by cavity depth (p<0.05). The nanofilled resin composite presented higher sorption and solubility than did the midifilled (p<0.05). The immersion media influenced the sorption and the solubility as follows: LA>AS>DW, (p<0.05). Both phenomena were influenced by cavity depth, with the sorption and solubility increasing from 1 to 5 mm (p<0.05). The degradation of resin composite restorations may be greater in the deepest regions of class II restorations when the composite is exposed to organic acids present in the oral biofilm (lactic acid).

【 授权许可】

CC BY   
 All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License

【 预 览 】
附件列表
Files Size Format View
RO202005130110081ZK.pdf 226KB PDF download
  文献评价指标  
  下载次数:15次 浏览次数:11次