期刊论文详细信息
eLife
Temporal chunking as a mechanism for unsupervised learning of task-sets
Etienne Koechlin1  Flora Bouchacourt1  Stefano Palminteri2  Srdjan Ostojic2 
[1] Laboratoire de Neurosciences Cognitives et Computationnelles, Institut National de la Sante et de la Recherche Medicale, Paris, France;Departement d’Etudes Cognitives, Ecole Normale Superieure, Paris, France;Laboratoire de Neurosciences Cognitives et Computationnelles, Institut National de la Sante et de la Recherche Medicale, Paris, France;Departement d’Etudes Cognitives, Ecole Normale Superieure, Paris, France;Institut d’Etudes de la Cognition, Universite de Recherche Paris Sciences et Lettres, Paris, France;
关键词: computational neuroscience;    cognitive neuroscience;    neural networks;    Human;   
DOI  :  10.7554/eLife.50469
来源: publisher
PDF
【 摘 要 】

Depending on environmental demands, humans can learn and exploit multiple concurrent sets of stimulus-response associations. Mechanisms underlying the learning of such task-sets remain unknown. Here we investigate the hypothesis that task-set learning relies on unsupervised chunking of stimulus-response associations that occur in temporal proximity. We examine behavioral and neural data from a task-set learning experiment using a network model. We first show that task-set learning can be achieved provided the timescale of chunking is slower than the timescale of stimulus-response learning. Fitting the model to behavioral data on a subject-by-subject basis confirmed this expectation and led to specific predictions linking chunking and task-set retrieval that were borne out by behavioral performance and reaction times. Comparing the model activity with BOLD signal allowed us to identify neural correlates of task-set retrieval in a functional network involving ventral and dorsal prefrontal cortex, with the dorsal system preferentially engaged when retrievals are used to improve performance.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202004211840668ZK.pdf 2399KB PDF download
  文献评价指标  
  下载次数:8次 浏览次数:10次