期刊论文详细信息
Remote Sensing
Spatial and Temporal Homogeneity of Solar Surface Irradiance across Satellite Generations
Rebekka Posselt1  Richard Mueller2  Reto Stཬkli1 
[1] Federal Office of Meteorology and Climatology MeteoSwiss, Kraehbuehlstrasse 58, CH-8044 Zurich, Switzerland; E-Mails:;Deutscher Wetterdienst, Frankfurter Str. 135, D-60387 Offenbach, Germany; E-Mail:
关键词: solar surface irradiance;    cloud albedo;    calibration;   
DOI  :  10.3390/rs3051029
来源: mdpi
PDF
【 摘 要 】

Solar surface irradiance (SIS) is an essential variable in the radiation budget of the Earth. Climate data records (CDR’s) of SIS are required for climate monitoring, for climate model evaluation and for solar energy applications. A 23 year long (1983–2005) continuous and validated SIS CDR based on the visible channel (0.45–1 μm) of the MVIRI instruments onboard the first generation of Meteosat satellites has recently been generated using a climate version of the well established Heliosat method. This version of the Heliosat method includes a newly developed self-calibration algorithm and an improved algorithm to determine the clear sky reflection. The climate Heliosat version is also applied to the visible narrow-band channels of SEVIRI onboard the Meteosat Second Generation Satellites (2004–present). The respective channels are observing the Earth in the wavelength region at about 0.6 μm and 0.8 μm. SIS values of the overlapping time period are used to analyse whether a homogeneous extension of the MVIRI CDR is possible with the SEVIRI narrowband channels. It is demonstrated that the spectral differences between the used visible channels leads to significant differences in the solar surface irradiance in specific regions. Especially, over vegetated areas the reflectance exhibits a high spectral dependency resulting in large differences in the retrieved SIS. The applied self-calibration method alone is not able to compensate the spectral differences of the channels. Furthermore, the extended range of the input values (satellite counts) enhances the cloud detection of the SEVIRI instruments resulting in lower values for SIS, on average. Our findings have implications for the application of the Heliosat method to data from other geostationary satellites (e.g., GOES, GMS). They demonstrate the need for a careful analysis of the effect of spectral and technological differences in visible channels on the retrieved solar irradiance.

【 授权许可】

CC BY   
© 2011 by the authors; licensee MDPI, Basel, Switzerland.

【 预 览 】
附件列表
Files Size Format View
RO202003190049511ZK.pdf 1042KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:16次