Journal of Functional Biomaterials | |
Self-Assembled Matrix by Umbilical Cord Stem Cells | |
Dimitrios Karamichos1  Celeste B. Rich2  Audrey E.K. Hutcheon1  Ruiyi Ren2  Biagio Saitta3  Vickery Trinkaus-Randall2  | |
[1] Department of Ophthalmology, Schepens Eye Research Institute, Harvard Medical School, 20 Staniford Street, Boston MA 02114, USA; E-Mails:;Department of Biochemistry, Boston University School of Medicine, 80 E Concord Street, Boston, MA 02118, USA; E-Mails:;Department of Biomedical Sciences, Medical Genetics and Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8727 W. Third Street, Metro Building, Suite 203, Los Angeles, CA 90048, USA; E-Mail: | |
关键词: stem cells; extracellular matrix; cornea; glycosaminoglycans; | |
DOI : 10.3390/jfb2030213 | |
来源: mdpi | |
【 摘 要 】
Corneal integrity is critical for vision. Corneal wounds frequently heal with scarring that impairs vision. Recently, human umbilical cord mesenchymal stem cells (cord stem cells) have been investigated for tissue engineering and therapy due to their availability and differentiation potential. In this study, we used cord stem cells in a 3-dimensional (3D) stroma-like model to observe extracellular matrix organization, with human corneal fibroblasts acting as a control. For 4 weeks, the cells were stimulated with a stable Vitamin C (VitC) derivative ±TGF-β1. After 4 weeks, the mean thickness of the constructs was ∼30 μm; however, cord stem cell constructs had 50% less cells per unit volume, indicating the formation of a dense matrix. We found minimal change in decorin and lumican mRNA, and a significant increase in perlecan mRNA in the presence of TGF-β1. Keratocan on the other hand decreased with TGF-β1 in both cell lineages. With both cell types, the constructs possessed aligned collagen fibrils and associated glycosaminoglycans. Fibril diameters did not change with TGF-β1 stimulation or cell lineage; however, highly sulfated glycosaminoglycans associated with the collagen fibrils significantly increased with TGF-β1. Overall, we have shown that cord stem cells can secrete their own extracellular matrix and promote the deposition and sulfation of various proteoglycans. Furthermore, these cells are at least comparable to commonly used corneal fibroblasts and present an alternative for the 3D
【 授权许可】
CC BY
© 2011 by the authors; licensee MDPI, Basel, Switzerland.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202003190048078ZK.pdf | 1001KB | download |