期刊论文详细信息
Sensors
Multisensor System for Isotemporal Measurements to Assess Indoor Climatic Conditions in Poultry Farms
Eliseo Bustamante2  Enrique Guijarro1  Fernando-Juan Garc໚-Diego5  Sebastián Balasch4  Antonio Hospitaler3 
[1] Department of Electronic Engineering, Universitat Politècnica de València, Camino de Vera s/n 46022, Valencia, Spain; E-Mail:;Institute of Animal Science and Technology, Universitat Politècnica de València, Camino de Vera s/n 46022 Valencia, Spain; E-Mail:;Department of Construction Engineering and Civil Engineering Projects, Universitat Politècnica de València, Camino de Vera s/n 46022 Valencia, Spain; E-Mail:;Department of Statistical, Operation Research and Quality, Universitat Politècnica de València, Camino de Vera s/n 46022 Valencia, Spain; E-Mail:;Department of Applied Physics, Universitat Politècnica de València, Camino de Vera s/n 46022 Valencia, Spain; E-Mail:
关键词: poultry building;    sensors;    air velocity;    isotemporal measurements;    multipoint measurements;    troubleshooting;   
DOI  :  10.3390/s120505752
来源: mdpi
PDF
【 摘 要 】

The rearing of poultry for meat production (broilers) is an agricultural food industry with high relevance to the economy and development of some countries. Periodic episodes of extreme climatic conditions during the summer season can cause high mortality among birds, resulting in economic losses. In this context, ventilation systems within poultry houses play a critical role to ensure appropriate indoor climatic conditions. The objective of this study was to develop a multisensor system to evaluate the design of the ventilation system in broiler houses. A measurement system equipped with three types of sensors: air velocity, temperature and differential pressure was designed and built. The system consisted in a laptop, a data acquisition card, a multiplexor module and a set of 24 air temperature, 24 air velocity and two differential pressure sensors. The system was able to acquire up to a maximum of 128 signals simultaneously at 5 second intervals. The multisensor system was calibrated under laboratory conditions and it was then tested in field tests. Field tests were conducted in a commercial broiler farm under four different pressure and ventilation scenarios in two sections within the building. The calibration curves obtained under laboratory conditions showed similar regression coefficients among temperature, air velocity and pressure sensors and a high goodness fit (R2 = 0.99) with the reference. Under field test conditions, the multisensor system showed a high number of input signals from different locations with minimum internal delay in acquiring signals. The variation among air velocity sensors was not significant. The developed multisensor system was able to integrate calibrated sensors of temperature, air velocity and differential pressure and operated succesfully under different conditions in a mechanically-ventilated broiler farm. This system can be used to obtain quasi-instantaneous fields of the air velocity and temperature, as well as differential pressure maps to assess the design and functioning of ventilation system and as a verification and validation (V&V) system of Computational Fluid Dynamics (CFD) simulations in poultry farms.

【 授权许可】

CC BY   
© 2012 by the authors; licensee MDPI, Basel, Switzerland

【 预 览 】
附件列表
Files Size Format View
RO202003190044671ZK.pdf 887KB PDF download
  文献评价指标  
  下载次数:17次 浏览次数:9次