| Sensors | |
| FPGA Implementation of Generalized Hebbian Algorithm for Texture Classification | |
| Shiow-Jyu Lin2  Wen-Jyi Hwang1  | |
| [1] Department of Computer Science and Information Engineering, National Taiwan Normal University, Taipei 116, Taiwan; E-Mail:;Department of Electronic Engineering, National Ilan University, Yilan 260, Taiwan; E-Mail: | |
| 关键词: system on programmable chip; reconfigurable computing; principal component analysis; generalized Hebbian algorithm; texture classification; FPGA; | |
| DOI : 10.3390/s120506244 | |
| 来源: mdpi | |
PDF
|
|
【 摘 要 】
This paper presents a novel hardware architecture for principal component analysis. The architecture is based on the Generalized Hebbian Algorithm (GHA) because of its simplicity and effectiveness. The architecture is separated into three portions: the weight vector updating unit, the principal computation unit and the memory unit. In the weight vector updating unit, the computation of different synaptic weight vectors shares the same circuit for reducing the area costs. To show the effectiveness of the circuit, a texture classification system based on the proposed architecture is physically implemented by Field Programmable Gate Array (FPGA). It is embedded in a System-On-Programmable-Chip (SOPC) platform for performance measurement. Experimental results show that the proposed architecture is an efficient design for attaining both high speed performance and low area costs.
【 授权许可】
CC BY
© 2012 by the authors; licensee MDPI, Basel, Switzerland.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO202003190044120ZK.pdf | 8302KB |
PDF