期刊论文详细信息
Sensors
Recent Progress in Distributed Fiber Optic Sensors
Xiaoyi Bao1 
关键词: fiber optic sensors;    brillouin scattering;    Rayleigh scattering;    Raman scattering;    distributed sensors;    birefringence;    temperature;    strain;    vibration;    optical time domain reflectrometer (OTDR);    optical frequency domain reflectrometer (OFDR);   
DOI  :  10.3390/s120708601
来源: mdpi
PDF
【 摘 要 】

Rayleigh, Brillouin and Raman scatterings in fibers result from the interaction of photons with local material characteristic features like density, temperature and strain. For example an acoustic/mechanical wave generates a dynamic density variation; such a variation may be affected by local temperature, strain, vibration and birefringence. By detecting changes in the amplitude, frequency and phase of light scattered along a fiber, one can realize a distributed fiber sensor for measuring localized temperature, strain, vibration and birefringence over lengths ranging from meters to one hundred kilometers. Such a measurement can be made in the time domain or frequency domain to resolve location information. With coherent detection of the scattered light one can observe changes in birefringence and beat length for fibers and devices. The progress on state of the art technology for sensing performance, in terms of spatial resolution and limitations on sensing length is reviewed. These distributed sensors can be used for disaster prevention in the civil structural monitoring of pipelines, bridges, dams and railroads. A sensor with centimeter spatial resolution and high precision measurement of temperature, strain, vibration and birefringence can find applications in aerospace smart structures, material processing, and the characterization of optical materials and devices.

【 授权许可】

CC BY   
© 2012 by the authors; licensee MDPI, Basel, Switzerland.

【 预 览 】
附件列表
Files Size Format View
RO202003190043664ZK.pdf 541KB PDF download
  文献评价指标  
  下载次数:33次 浏览次数:31次