Laser-induced polarization spectroscopy (LIPS), degenerate four-wave mixing (DFWM), and electronic-resonance-enhanced (ERE) coherent anti-Stokes Raman scattering (CARS) are techniques that shows great promise for sensitive measurements of transient gas-phase species, and diagnostic applications of these techniques are being pursued actively at laboratories throughout the world. However, significant questions remain regarding strategies for quantitative concentration measurements using these techniques. The primary objective of this research program is to develop and test strategies for quantitative concentration measurements in flames and plasmas using these nonlinear optical techniques. Theoretically, we are investigating the physics of these processes by direct numerical integration (DNI) of the time-dependent density matrix equations that describe the wave-mixing interaction.