期刊论文详细信息
International Journal of Molecular Sciences
The Role of Free Radicals in the Aging Brain and Parkinson’s Disease: Convergence and Parallelism
Hemant Kumar1  Hyung-Woo Lim1  Sandeep Vasant More1  Byung-Wook Kim1  Sushruta Koppula1  In Su Kim1 
[1] Department of Biotechnology, Konkuk University, Chungju 380-704, Korea;
关键词: free radicals;    aging;    Parkinson’s disease;    α-synuclein;    mitochondrial dysfunction;    nrf2;   
DOI  :  10.3390/ijms130810478
来源: mdpi
PDF
【 摘 要 】

Free radical production and their targeted action on biomolecules have roles in aging and age-related disorders such as Parkinson’s disease (PD). There is an age-associated increase in oxidative damage to the brain, and aging is considered a risk factor for PD. Dopaminergic neurons show linear fallout of 5–10% per decade with aging; however, the rate and intensity of neuronal loss in patients with PD is more marked than that of aging. Here, we enumerate the common link between aging and PD at the cellular level with special reference to oxidative damage caused by free radicals. Oxidative damage includes mitochondrial dysfunction, dopamine auto-oxidation, α-synuclein aggregation, glial cell activation, alterations in calcium signaling, and excess free iron. Moreover, neurons encounter more oxidative stress as a counteracting mechanism with advancing age does not function properly. Alterations in transcriptional activity of various pathways, including nuclear factor erythroid 2-related factor 2, glycogen synthase kinase 3β, mitogen activated protein kinase, nuclear factor kappa B, and reduced activity of superoxide dismutase, catalase and glutathione with aging might be correlated with the increased incidence of PD.

【 授权许可】

CC BY   
© 2012 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland.

【 预 览 】
附件列表
Files Size Format View
RO202003190042416ZK.pdf 759KB PDF download
  文献评价指标  
  下载次数:14次 浏览次数:7次