期刊论文详细信息
Journal of Functional Biomaterials
Control of Scar Tissue Formation in the Cornea: Strategies in Clinical and Corneal Tissue Engineering
Samantha L. Wilson1  Alicia J. El Haj1 
[1] Institute for Science and Technology in Medicine, School of Medicine, Keele University, Staffordshire, ST4 7QB, UK;
关键词: cornea;    keratocyte;    fibroblast;    differentiation;    scarring;    disease;   
DOI  :  10.3390/jfb3030642
来源: mdpi
PDF
【 摘 要 】

Corneal structure is highly organized and unified in architecture with structural and functional integration which mediates transparency and vision. Disease and injury are the second most common cause of blindness affecting over 10 million people worldwide. Ninety percent of blindness is permanent due to scarring and vascularization. Scarring caused via fibrotic cellular responses, heals the tissue, but fails to restore transparency. Controlling keratocyte activation and differentiation are key for the inhibition and prevention of fibrosis. Ophthalmic surgery techniques are continually developing to preserve and restore vision but corneal regression and scarring are often detrimental side effects and long term continuous follow up studies are lacking or discouraging. Appropriate corneal models may lead to a reduced need for corneal transplantation as presently there are insufficient numbers or suitable tissue to meet demand. Synthetic optical materials are under development for keratoprothesis although clinical use is limited due to implantation complications and high rejection rates. Tissue engineered corneas offer an alternative which more closely mimic the morphological, physiological and biomechanical properties of native corneas. However, replication of the native collagen fiber organization and retaining the phenotype of stromal cells which prevent scar-like tissue formation remains a challenge. Careful manipulation of culture environments are under investigation to determine a suitable environment that simulates native ECM organization and stimulates keratocyte migration and generation.

【 授权许可】

CC BY   
© 2012 by the authors; licensee MDPI, Basel, Switzerland.

【 预 览 】
附件列表
Files Size Format View
RO202003190041853ZK.pdf 2227KB PDF download
  文献评价指标  
  下载次数:15次 浏览次数:3次