期刊论文详细信息
Molecules
A Comparative Uptake Study of Multiplexed PET Tracers in Mice with Turpentine-Induced Inflammation
Tingting Huang1  Hongliang Wang1  Ganghua Tang1  Xiang Liang1  Dahong Nie1  Chang Yi1 
[1] Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China These authors contributed equally to this work.
关键词: inflammation;    PET imaging;    turpentine oil;    [18F]FDG;    multiple PET tracers;   
DOI  :  10.3390/molecules171213948
来源: mdpi
PDF
【 摘 要 】

The potential value of multiplexed positron emission tomography (PET) tracers in mice with turpentine-induced inflammation was evaluated and compared with 2-[18F]fluoro-2-deoxy-D-glucose ([18F]FDG) for glucose metabolism imaging. These PET tracers included [18F]fluoromethylcholine ([18F]FCH) for choline metabolism imaging, (S-[11C]methyl)-D-cysteine ([11C]DMCYS) for amino acid metabolism imaging, [11C]bis(zinc(II)-dipicolylamine) ([11C]DPA-Zn2+) for apoptosis imaging, 2-(4-N-[11C]-methylaminophenyl)-6-hydroxybenzothiazole ([11C]PIB) for β amyloid binding imaging, and [18F]fluoride (18F) for bone metabolism imaging. In mice with turpentine-induced inflammation mice, the biodistribution of all the tracers mentioned above at 5, 15, 30, 45, and 60 min postinjection was determined. Also, the time-course curves of the tracer uptake ratios for inflammatory thigh muscle (IM) to normal uninflammatory thigh muscle (NM), IM to blood (BL), IM to brain (BR), and IM to liver (LI) were acquired, respectively. Moreover, PET imaging with the tracers within 60 min postinjection on a clinical PET/CT scanner was also conducted. [18F]FDG and 18F showed relatively higher uptake ratios for IM to NM, IM to BL, IM to BR, and IM to LI than [18F]FCH, [11C]DPA-Zn2+, [11C]DMCYS and [11C]PIB, which were highly consistent with the results delineated in PET images. The results demonstrate that 18F seems to be a potential PET tracer for inflammation imaging. [18F]FCH and [11C]DMCYS, with lower accumulation in inflammatory tissue than [18F]FDG, are not good PET tracers for inflammation imaging. As a promising inflammatory tracer, the chemical structure of [11C]DPA-Zn2+ needs to be further optimized.

【 授权许可】

CC BY   
This is an open access article distributed under the Creative Commons Attribution License (CC BY) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

【 预 览 】
附件列表
Files Size Format View
RO202003190040179ZK.pdf 393KB PDF download
  文献评价指标  
  下载次数:9次 浏览次数:7次