期刊论文详细信息
Agronomy
Integrated Palmer Amaranth Management in Glufosinate-Resistant Cotton: II. Primary, Secondary and Conservation Tillage
Jatinder S. Aulakh1  Andrew J. Price2  Stephen F. Enloe1  Glenn Wehtje1 
[1]Agronomy and Soils, Auburn University, Auburn, AL 36849, USA
[2] E-Mails:
[3]National Soil Dynamics Laboratory, Agricultural Research Service, United States Department of Agriculture, 411 South Donahue Drive, Auburn, AL 36852, USA
关键词: cover crops;    glufosinate-tolerant cotton;    soil inversion;    spring tillage methods;    specifically;   
DOI  :  10.3390/agronomy3010028
来源: mdpi
PDF
【 摘 要 】

A three year field experiment was conducted to evaluate the role of soil inversion, cover crops and spring tillage methods for Palmer amaranth between-row (BR) and within-row (WR) management in glufosinate-resistant cotton. Main plots were two soil inversion treatments: fall inversion tillage (IT) and non-inversion tillage (NIT). Subplots were three cover treatments: crimson clover, cereal rye or none (i.e., winter fallow); and the sub subplots were four secondary spring tillage methods: disking followed by (fb) cultivator (DCU), disking fb chisel plow (DCH), disking fb disking (DD) and no tillage (NT). Averaged over years and soil inversion, the crimson clover produced maximum cover biomass (4390 kg ha−1) fb cereal rye (3698 kg ha−1) and winter fallow (777 kg ha−1). Two weeks after planting (WAP) and before the postemergence (POST) application, Palmer amaranth WR and BR density were two- and four-times less, respectively, in IT than NIT. Further, Palmer amaranth WR and BR density were reduced two-fold following crimson clover and cereal rye than following winter fallow at 2 WAP. Without IT, early season Palmer amaranth densities were 40% less following DCU, DCH and DD, when compared with IT. Following IT, no spring tillage method improved Palmer amaranth control. The timely application of glufosinate + S-metolachlor POST tank mixture greatly improved Palmer amaranth control in both IT and NIT systems. The highest cotton yields were obtained with DD following cereal rye (2251 kg ha−1), DD following crimson clover (2213 kg ha−1) and DD following winter fallow (2153 kg ha−1). On average, IT cotton yields (2133 kg ha−1) were 21% higher than NIT (1766 kg ha−1). Therefore, from an integrated weed management standpoint, an occasional fall IT could greatly reduce Palmer amaranth emergence on farms highly infested with glyphosate-resistant Palmer amaranth. In addition, a cereal rye or crimson clover cover crop can effectively reduce early season Palmer amaranth emergence in both IT and NIT systems. For effective and season-long control of Palmer amaranth, one or more POST applications of glufosinate + residual herbicide as tank mixture may be needed in a glufosinate-based cotton production system.

【 授权许可】

CC BY   
© 2013 by the authors; licensee MDPI, Basel, Switzerland.

【 预 览 】
附件列表
Files Size Format View
RO202003190038978ZK.pdf 217KB PDF download
  文献评价指标  
  下载次数:10次 浏览次数:19次