International Journal of Molecular Sciences | |
Adsorption and Orientation of Human Islet Amyloid Polypeptide (hIAPP) Monomer at Anionic Lipid Bilayers: Implications for Membrane-Mediated Aggregation | |
Yan Jia1  Zhenyu Qian1  Yun Zhang1  | |
[1] State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (MOE), Department of Physics, Fudan University, 220 Handan Road, Shanghai 200433, China; | |
关键词: type 2 diabetes; human islet amyloid polypeptide; anionic palmitoyl oleolyohosphatidyl glycerol (POPG) bilayer; adsorption dynamics; binding orientation; peptide-lipid interaction; molecular dynamics simulations; | |
DOI : 10.3390/ijms14036241 | |
来源: mdpi | |
【 摘 要 】
Protein misfolding and aggregation cause serious degenerative diseases, such as Alzheimer’s and type II diabetes. Human islet amyloid polypeptide (hIAPP) is the major component of amyloid deposits found in the pancreas of type II diabetic patients. Increasing evidence suggests that β-cell death is related to the interaction of hIAPP with the cellular membrane, which accelerates peptide aggregation. In this study, as a first step towards understanding the membrane-mediated hIAPP aggregation, we investigate the atomic details of the initial step of hIAPP-membrane interaction, including the adsorption orientation and conformation of hIAPP monomer at an anionic POPG lipid bilayer by performing all-atom molecular dynamics simulations. We found that hIAPP monomer is quickly adsorbed to bilayer surface, and the adsorption is initiated from the
【 授权许可】
CC BY
© 2013 by the authors; licensee MDPI, Basel, Switzerland.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202003190037656ZK.pdf | 1821KB | download |