Energies | |
Banki-Michell Optimal Design by Computational Fluid Dynamics Testing and Hydrodynamic Analysis | |
Vincenzo Sammartano1  Costanza Aricò1  Armando Carravetta2  Oreste Fecarotta2  | |
[1] Department of Civil, Environmental, Aerospace and Materials Engineering, University of Palermo, Viale delle Scienze edificio 8, 90128, Palermo, Italy; E-Mails:;Department of Civil, Structure and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125, Naples, Italy; E-Mails: | |
关键词: hydraulic turbine; Banki-Michell; cross-flow turbine; CFD analysis; | |
DOI : 10.3390/en6052362 | |
来源: mdpi | |
【 摘 要 】
In hydropower, the exploitation of small power sources requires the use of small turbines that combine efficiency and economy. Banki-Michell turbines represent a possible choice for their simplicity and for their good efficiency under variable load conditions. Several experimental and numerical tests have already been designed for examining the best geometry and optimal design of cross-flow type machines, but a theoretical framework for a sequential design of the turbine parameters, taking full advantage of recently expanded computational capabilities, is still missing. To this aim, after a review of the available criteria for Banki-Michell parameter design, a novel two-step procedure is described. In the first step, the initial and final blade angles, the outer impeller diameter and the shape of the nozzle are selected using a simple hydrodynamic analysis, based on a very strong simplification of reality. In the second step, the inner diameter, as well as the number of blades and their shape, are selected by testing single options using computational fluid dynamics (CFD) simulations, starting from the suggested literature values. Good efficiency is attained not only for the design discharge, but also for a large range of variability around the design value.
【 授权许可】
CC BY
© 2013 by the authors; licensee MDPI, Basel, Switzerland.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202003190036657ZK.pdf | 2362KB | download |