期刊论文详细信息
Molecules
Targeting the Mitochondrial Respiratory Chain of Cryptococcus through Antifungal Chemosensitization: A Model for Control of Non-Fermentative Pathogens
Jong H. Kim2  Ronald P. Haff2  Natália C. G. Faria1  Maria de L. Martins1  Kathleen L. Chan2 
[1] Instituto de Higiene e Medicina Tropical/CREM, Universidade Nova de Lisboa, Portugal; E-Mails:;Plant Mycotoxin Research Unit, Western Regional Research Center, USDA-ARS, 800 Buchanan St., Albany, CA 94710, USA; E-Mails:
关键词: chemosensitization;    Cryptococcus;    Candida;    Saccharomyces;    octyl gallate;    2;    3-dihydroxybenzaldehyde;    mitochondrial respiration inhibitors;   
DOI  :  10.3390/molecules18088873
来源: mdpi
PDF
【 摘 要 】

Enhanced control of species of Cryptococcus, non-fermentative yeast pathogens, was achieved by chemosensitization through co-application of certain compounds with a conventional antimicrobial drug. The species of Cryptococcus tested showed higher sensitivity to mitochondrial respiratory chain (MRC) inhibition compared to species of Candida. This higher sensitivity results from the inability of Cryptococcus to generate cellular energy through fermentation. To heighten disruption of cellular MRC, octyl gallate (OG) or 2,3-dihydroxybenzaldehyde (2,3-DHBA), phenolic compounds inhibiting mitochondrial functions, were selected as chemosensitizers to pyraclostrobin (PCS; an inhibitor of complex III of MRC). The cryptococci were more susceptible to the chemosensitization (i.e., PCS + OG or 2,3-DHBA) than the Candida with all Cryptococcus strains tested being sensitive to this chemosensitization. Alternatively, only few of the Candida strains showed sensitivity. OG possessed higher chemosensitizing potency than 2,3-DHBA, where the concentration of OG required with the drug to achieve chemosensitizing synergism was much lower than that required of 2,3-DHBA. Bioassays with gene deletion mutants of the model yeast Saccharomyces cerevisiae showed that OG or 2,3-DHBA affect different cellular targets. These assays revealed mitochondrial superoxide dismutase or glutathione homeostasis plays a relatively greater role in fungal tolerance to 2,3-DHBA or OG, respectively. These findings show that application of chemosensitizing compounds that augment MRC debilitation is a promising strategy to antifungal control against yeast pathogens.

【 授权许可】

CC BY   
© 2013 by the authors; licensee MDPI, Basel, Switzerland.

【 预 览 】
附件列表
Files Size Format View
RO202003190034317ZK.pdf 718KB PDF download
  文献评价指标  
  下载次数:5次 浏览次数:10次