期刊论文详细信息
Entropy
Application of Multivariate Empirical Mode Decomposition and Sample Entropy in EEG Signals via Artificial Neural Networks for Interpreting Depth of Anesthesia
Jeng-Rung Huang4  Shou-Zen Fan1  Maysam F. Abbod3  Kuo-Kuang Jen2  Jeng-Fu Wu2 
[1] Department of Anesthesiology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan; E-Mail:;Missile & Rocket Systems Research Division, Chung-Shan Institute of Science and Technology, Taoyuan, Longtan, 32500, Taiwan; E-Mails:;School of Engineering and Design, Brunel University, London, UB8 3PH, UK; E-Mail:;Department of Mechanical Engineering, Yuan Ze University, Taoyuan, Chung-Li, 32003, Taiwan; E-Mail:
关键词: sample entropy;    electroencephalography;    depth of anesthesia;    multivariate empirical mode decomposition;    artificial neural networks;    receiver operating characteristic curve;   
DOI  :  10.3390/e15093325
来源: mdpi
PDF
【 摘 要 】

EEG (Electroencephalography) signals can express the human awareness activities and consequently it can indicate the depth of anesthesia. On the other hand, Bispectral-index (BIS) is often used as an indicator to assess the depth of anesthesia. This study is aimed at using an advanced signal processing method to analyze EEG signals and compare them with existing BIS indexes from a commercial product (i.e., IntelliVue MP60 BIS module). Multivariate empirical mode decomposition (MEMD) algorithm is utilized to filter the EEG signals. A combination of two MEMD components (IMF2 + IMF3) is used to express the raw EEG. Then, sample entropy algorithm is used to calculate the complexity of the patients’ EEG signal. Furthermore, linear regression and artificial neural network (ANN) methods were used to model the sample entropy using BIS index as the gold standard. ANN can produce better target value than linear regression. The correlation coefficient is 0.790 ± 0.069 and MAE is 8.448 ± 1.887. In conclusion, the area under the receiver operating characteristic (ROC) curve (AUC) of sample entropy value using ANN and MEMD is 0.969 ± 0.028 while the AUC of sample entropy value without filter is 0.733 ± 0.123. It means the MEMD method can filter out noise of the brain waves, so that the sample entropy of EEG can be closely related to the depth of anesthesia. Therefore, the resulting index can be adopted as the reference for the physician, in order to reduce the risk of surgery.

【 授权许可】

CC BY   
© 2013 by the authors; licensee MDPI, Basel, Switzerland.

【 预 览 】
附件列表
Files Size Format View
RO202003190033789ZK.pdf 436KB PDF download
  文献评价指标  
  下载次数:19次 浏览次数:28次