期刊论文详细信息
Entropy
A Kernel-Based Calculation of Information on a Metric Space
R. Joshua Tobin1 
[1] School of Mathematics, Trinity College Dublin, Dublin 2, Ireland; E-Mail:
关键词: mutual information;    neuroscience;    electrophysiology;    metric spaces;    kernel density estimation;   
DOI  :  10.3390/e15104540
来源: mdpi
PDF
【 摘 要 】

Kernel density estimation is a technique for approximating probability distributions. Here, it is applied to the calculation of mutual information on a metric space. This is motivated by the problem in neuroscience of calculating the mutual information between stimuli and spiking responses; the space of these responses is a metric space. It is shown that kernel density estimation on a metric space resembles the k-nearest-neighbor approach. This approach is applied to a toy dataset designed to mimic electrophysiological data.

【 授权许可】

CC BY   
© 2013 by the authors; licensee MDPI, Basel, Switzerland.

【 预 览 】
附件列表
Files Size Format View
RO202003190032072ZK.pdf 241KB PDF download
  文献评价指标  
  下载次数:10次 浏览次数:8次