期刊论文详细信息
International Journal of Molecular Sciences
Genomic and Phenotypic Alterations of the Neuronal-Like Cells Derived from Human Embryonal Carcinoma Stem Cells (NT2) Caused by Exposure to Organophosphorus Compounds Paraoxon and Mipafox
David Pamies2  Miguel A. Sogorb2  Marco Fabbri1  Laura Gribaldo1  Angelo Collotta1  Bibiana Scelfo1  Eugenio Vilanova2  Georgina Harris1 
[1] Institute for Health and Consumer Protection, European Commission Joint Research Centre, Ispra, Varese 21027, Italy; E-Mails:;Bioengineering Institute, Miguel Hernández University, Elche 03202, Alicante, Spain; E-Mails:
关键词: neurodifferentiation;    neurodevelopmental toxicity;    NT2;    organophosphorus pesticides;    NTE;    human embryonal carcinoma stem cells;   
DOI  :  10.3390/ijms15010905
来源: mdpi
PDF
【 摘 要 】

Historically, only few chemicals have been identified as neurodevelopmental toxicants, however, concern remains, and has recently increased, based upon the association between chemical exposures and increased developmental disorders. Diminution in motor speed and latency has been reported in preschool children from agricultural communities. Organophosphorus compounds (OPs) are pesticides due to their acute insecticidal effects mediated by the inhibition of acetylcholinesterase, although other esterases as neuropathy target esterase (NTE) can also be inhibited. Other neurological and neurodevelopmental toxic effects with unknown targets have been reported after chronic exposure to OPs in vivo. We studied the initial stages of retinoic acid acid-triggered differentiation of pluripotent cells towards neural progenitors derived from human embryonal carcinoma stem cells to determine if neuropathic OP, mipafox, and non-neuropathic OP, paraoxon, are able to alter differentiation of neural precursor cells in vitro. Exposure to 1 μM paraoxon (non-cytotoxic concentrations) altered the expression of different genes involved in signaling pathways related to chromatin assembly and nucleosome integrity. Conversely, exposure to 5 μM mipafox, a known inhibitor of NTE activity, showed no significant changes on gene expression. We conclude that 1 μM paraoxon could affect the initial stage of in vitro neurodifferentiation possibly due to a teratogenic effect, while the absence of transcriptional alterations by mipafox exposure did not allow us to conclude a possible effect on neurodifferentiation pathways at the tested concentration.

【 授权许可】

CC BY   
© 2014 by the authors; licensee MDPI, Basel, Switzerland

【 预 览 】
附件列表
Files Size Format View
RO202003190029933ZK.pdf 779KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:8次