Materials | |
Karla Lehle2  Jing Li2  Hanngörg Zimmermann1  Björn Hartmann1  Daniel Wehner3  Thomas Schmid3  | |
[1] PFM medical titanium, Höfener Str. 45, 90431 Nürnberg, |
|
关键词: endothelial cell seeding; cytocompatibility; haemocompatibility; platelet adhesion; cardiovascular tissue engineering; titanium; | |
DOI : 10.3390/ma7020623 | |
来源: mdpi | |
【 摘 要 】
Polycarbonateurethanes (PCU) and polyetherurethanes (PEU) are used for medical devices, however their bio- and haemocompatibility is limited. In this study, the effect of titaniferous upgrading of different polyurethanes on the bio- and haemocompatibility was investigated by endothelial cell (EC) adhesion/proliferation and platelet adhesion (scanning electron microscopy), respectively. There was no EC adhesion/proliferation and only minor platelet adhesion on upgraded and pure PCU (Desmopan). PEUs (Texin 985, Tecothane 1085, Elastollan 1180A) differed in their cyto- and haemocompatibility. While EC adhesion depended on the type of PEU, any proliferative activity was inhibited. Additional titaniferous upgrading of PEU induced EC proliferation and increased metabolic activity. However, adherent ECs were significantly activated. While Texin was highly thrombotic, only small amounts of platelets adhered onto Tecothane and Elastollan. Additional titaniferous upgrading reduced thrombogenicity of Texin, preserved haemocompatibility of Elastollan, and increased platelet activation/aggregation on Tecothane. In conclusion, none of the PUs was cytocompatible; only titaniferous upgrading allowed EC proliferation and metabolism on PEUs. Haemocompatibility depended on the type of PU.
【 授权许可】
CC BY
© 2014 by the authors; licensee MDPI, Basel, Switzerland
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202003190029543ZK.pdf | 876KB | download |