Sensors | |
Implementation and Performance of a GPS/INS Tightly Coupled Assisted PLL Architecture Using MEMS Inertial Sensors | |
Youssef Tawk2  Phillip Tomé2  Cyril Botteron2  Yannick Stebler1  | |
[1] École Polytechnique Fédérale de Lausanne, Geodetic Engineering Laboratory, Lausanne, Switzerland; E-Mail:;École Polytechnique Fédérale de Lausanne, Institute of Microengineering (IMT), Electronics and Signal Processing Laboratory, Neuchâtel, Switzerland; E-Mails: | |
关键词: GPS; INS; MEMS inertial sensor; tight coupling; extended kalman filter; tracking; acquisition; navigation; | |
DOI : 10.3390/s140203768 | |
来源: mdpi | |
【 摘 要 】
The use of global navigation satellite system receivers for navigation still presents many challenges in urban canyon and indoor environments, where satellite availability is typically reduced and received signals are attenuated. To improve the navigation performance in such environments, several enhancement methods can be implemented. For instance, external aid provided through coupling with other sensors has proven to contribute substantially to enhancing navigation performance and robustness. Within this context, coupling a very simple GPS receiver with an Inertial Navigation System (INS) based on low-cost micro-electro-mechanical systems (MEMS) inertial sensors is considered in this paper. In particular, we propose a GPS/INS Tightly Coupled Assisted PLL (TCAPLL) architecture, and present most of the associated challenges that need to be addressed when dealing with very-low-performance MEMS inertial sensors. In addition, we propose a data monitoring system in charge of checking the quality of the measurement flow in the architecture. The implementation of the TCAPLL is discussed in detail, and its performance under different scenarios is assessed. Finally, the architecture is evaluated through a test campaign using a vehicle that is driven in urban environments, with the purpose of highlighting the pros and cons of combining MEMS inertial sensors with GPS over GPS alone.
【 授权许可】
CC BY
© 2014 by the authors; licensee MDPI, Basel, Switzerland.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202003190028834ZK.pdf | 3521KB | download |