期刊论文详细信息
International Journal of Molecular Sciences
The Effect of Physical and Chemical Cues on Hepatocellular Function and Morphology
Shimaa A. Abdellatef1  Akihiko Ohi2  Toshihide Nabatame2 
[1] Cell-Materials Interaction Group, Biomaterials Unit, Nano-Life Field, International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; E-Mail:;MANA Foundry, International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; E-Mails:
关键词: hepatocytes;    topography;    RGD;    TiO2;   
DOI  :  10.3390/ijms15034299
来源: mdpi
PDF
【 摘 要 】

Physical topographical features and/or chemical stimuli to the extracellular matrix (ECM) provide essential cues that manipulate cell functions. From the physical point of view, contoured nanostructures are very important for cell behavior in general, and for cellular functions. From the chemical point of view, ECM proteins containing an RGD sequence are known to alter cell functions. In this study, the influence of integrated physical and chemical cues on a liver cell line (HepG2) was investigated. To mimic the physical cues provided by the ECM, amorphous TiO2 nanogratings with specific dimensional and geometrical characteristics (nanogratings 90 nm wide and 150 nm apart) were fabricated. To mimic the chemical cues provided by the ECM, the TiO2 inorganic film was modified by immobilization of the RGD motif. The hepatic cell line morphological and functional changes induced by simultaneously combining these diversified cues were investigated, including cellular alignment and the expression of different functional proteins. The combination of nanopatterns and surface modification with RGD induced cellular alignment and expression of functional proteins, indicating that physical and chemical cues are important factors for optimizing hepatocyte function.

【 授权许可】

CC BY   
© 2014 by the authors; licensee MDPI, Basel, Switzerland

【 预 览 】
附件列表
Files Size Format View
RO202003190028062ZK.pdf 1213KB PDF download
  文献评价指标  
  下载次数:15次 浏览次数:8次