期刊论文详细信息
Sensors
Clustering-Based Ensemble Learning for Activity Recognition in Smart Homes
Anna Jurek1  Chris Nugent2  Yaxin Bi2 
[1] School of Computing and Mathematics, University of Ulster, Jordanstown, Shore Road, Newtownabbey, Co. Antrim BT37 0QB, UK;
关键词: activity recognition;    classifier ensembles;    clustering;    smart homes;   
DOI  :  10.3390/s140712285
来源: mdpi
PDF
【 摘 要 】

Application of sensor-based technology within activity monitoring systems is becoming a popular technique within the smart environment paradigm. Nevertheless, the use of such an approach generates complex constructs of data, which subsequently requires the use of intricate activity recognition techniques to automatically infer the underlying activity. This paper explores a cluster-based ensemble method as a new solution for the purposes of activity recognition within smart environments. With this approach activities are modelled as collections of clusters built on different subsets of features. A classification process is performed by assigning a new instance to its closest cluster from each collection. Two different sensor data representations have been investigated, namely numeric and binary. Following the evaluation of the proposed methodology it has been demonstrated that the cluster-based ensemble method can be successfully applied as a viable option for activity recognition. Results following exposure to data collected from a range of activities indicated that the ensemble method had the ability to perform with accuracies of 94.2% and 97.5% for numeric and binary data, respectively. These results outperformed a range of single classifiers considered as benchmarks.

【 授权许可】

CC BY   
© 2014 by the authors; licensee MDPI, Basel, Switzerland.

【 预 览 】
附件列表
Files Size Format View
RO202003190024070ZK.pdf 830KB PDF download
  文献评价指标  
  下载次数:15次 浏览次数:17次