期刊论文详细信息
Remote Sensing
Modelling the Spatial Distribution of Culicoides imicola: Climatic versus Remote Sensing Data
Jasper Van Doninck1  Bernard De Baets3  Jan Peters3  Guy Hendrickx2  Els Ducheyne2 
[1] Laboratory of Hydrology and Water Management, Ghent University, Coupure links 653, 9000 Ghent, Belgium; E-Mail:;Avia-GIS, Risschotlei 33, 2980 Zoersel, Belgium; E-Mails:;Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, Coupure links 653, 9000 Ghent, Belgium; E-Mails:
关键词: species distribution modelling;    bluetongue;    MODIS;    WorldClim;    random forests;    variable importance;   
DOI  :  10.3390/rs6076604
来源: mdpi
PDF
【 摘 要 】

Culicoides imicola is the main vector of the bluetongue virus in the Mediterranean Basin. Spatial distribution models for this species traditionally employ either climatic data or remotely sensed data, or a combination of both. Until now, however, no studies compared the accuracies of C. imicola distribution models based on climatic versus remote sensing data, even though remotely sensed datasets may offer advantages over climatic datasets with respect to spatial and temporal resolution. This study performs such an analysis for datasets over the peninsula of Calabria, Italy. Spatial distribution modelling based on climatic data using the random forests machine learning technique resulted in a percentage of correctly classified C. imicola trapping sites of nearly 88%, thereby outperforming the linear discriminant analysis and logistic regression modelling techniques. When replacing climatic data by remote sensing data, random forests modelling accuracies decreased only slightly. Assessment of the different variables’ importance showed that precipitation during late spring was the most important amongst 48 climatic variables. The dominant remotely sensed variables could be linked to climatic variables. Notwithstanding the slight decrease in predictive performance in this study, remotely sensed datasets could be preferred over climatic datasets for the modelling of C. imicola. Unlike climatic observations, remote sensing provides an equally high spatial resolution globally. Additionally, its high temporal resolution allows for investigating changes in species’ presence and changing environment.

【 授权许可】

CC BY   
© 2014 by the authors; licensee MDPI, Basel, Switzerland

【 预 览 】
附件列表
Files Size Format View
RO202003190023655ZK.pdf 1605KB PDF download
  文献评价指标  
  下载次数:16次 浏览次数:13次