期刊论文详细信息
International Journal of Health Geographics
Assessing the effects of variables and background selection on the capture of the tick climate niche
José de la Fuente3  David Estrada-Sánchez2  Adrián Estrada-Sánchez1  Agustín Estrada-Peña2 
[1] Department of Geography, University of Zaragoza, Pedro Cerbuna, 2, 50006 Zaragoza, Spain;Department of Parasitology, Faculty of Veterinary Medicine, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain;Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, USA
关键词: Collinearity;    Spatial autocorrelation;    WorldClim;    CliMond;    MODIS;    Climate niche;    Hyalomma marginatum;    Ixodes ricinus;   
Others  :  810021
DOI  :  10.1186/1476-072X-12-43
 received in 2013-06-30, accepted in 2013-09-24,  发布年份 2013
PDF
【 摘 要 】

Background

Modelling the environmental niche and spatial distribution of pathogen-transmitting arthropods involves various quality and methodological concerns related to using climate data to capture the environmental niche. This study tested the potential of MODIS remotely sensed and interpolated gridded covariates to estimate the climate niche of the medically important ticks Ixodes ricinus and Hyalomma marginatum. We also assessed model inflation resulting from spatial autocorrelation (SA) and collinearity (CO) of covariates used as time series of data (monthly values of variables), principal components analysis (PCA), and a discrete Fourier transformation. Performance of the models was measured using area under the curve (AUC), autocorrelation by Moran’s I, and collinearity by the variance inflation factor (VIF).

Results

The covariate spatial resolution slightly affected the final AUC. Consistently, models for H. marginatum performed better than models for I. ricinus, likely because of a species-derived rather than covariate effect because the former occupies a more limited niche. Monthly series of interpolated climate always better captured the climate niche of the ticks, but the SA was around 2 times higher and the maximum VIF between covariates around 30 times higher in interpolated than in MODIS-derived covariates. Interpolated or remotely sensed monthly series of covariates always had higher SA and CO than their transformations by PCA or Fourier. Regarding the effects of background point selection on AUC, we found that selection based on a set of rules for the distance to the core distribution and the heterogeneity of the landscape influenced model outcomes. The best selection relied on a random selection of points as close as possible to the target organism area of distribution, but effects are variable according to the species modelled.

Conclusion

Testing for effects of SA and CO is necessary before incorporating these covariates into algorithms building a climate envelope. Results support a higher SA and CO in an interpolated climate dataset than in remotely sensed covariates. Satellite-derived information has fewer drawbacks compared to interpolated climate for modelling tick relationships with environmental niche. Removal of SA and CO by a harmonic regression seems most promising because it retains both biological and statistical meaning.

【 授权许可】

   
2013 Estrada-Peña et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140709031555425.pdf 1635KB PDF download
Figure 6. 84KB Image download
Figure 5. 73KB Image download
Figure 4. 30KB Image download
Figure 3. 40KB Image download
Figure 2. 35KB Image download
Figure 1. 36KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Wimberly MC, Baer AD, Yabsley MJ: Enhanced spatial models for predicting the geographic distributions of tick-borne pathogens. Int J Health Geogr 2008, 7:15-29. BioMed Central Full Text
  • [2]European Center for Disease Preventicon and Control: Development of Aedes albopictus Risk Maps, Technical Report 0905. 2009. See http://ecdc.europa.eu/en/publications/Publications/0905_TER_Development_of_Aedes_Albopictus_Risk_Maps.pdf webcite
  • [3]Sonenshine DE: The biology of ticks. Volume 1. New York, USA: Oxford University Press, Inc; 1991:447.
  • [4]Rudolph D, Knülle W: Site and mechanism of water vapour uptake from the atmosphere in ixodid ticks. Nature 1977, 249:84-85.
  • [5]Kahl O, Alidousti I: Bodies of liquid water as a source of water gain for Ixodes ricinus ticks (Acari: Ixodidae). Exp Appl Acarol 1997, 21:731-746.
  • [6]Jaenson TGT, Lindgren E: The range of Ixodes ricinus and the risk of contracting Lyme borreliosis will increase northwards when the vegetation period becomes longer. Ticks and Tick-borne Dis 2011, 21:44-49.
  • [7]Medlock JM, Hansford KM, Bormane A, Derdakova M, Estrada-Peña A, George J-C: Driving forces for changes in geographical distribution of Ixodes ricinus ticks in Europe. Parasites Vectors 2013, 6:1. doi:10.1186/1756-3305-6-1 BioMed Central Full Text
  • [8]Jaenson TGT, Jaenson DGE, Eisen L, Petersson E, Lindgren E: Changes in the geographical distribution and abundance of the tick Ixodes ricinus during the past 30 years in Sweden. Parasites Vectors 2012., 5http://www.parasitesandvectors.com/content/5/1/8 webcite
  • [9]Danielová V, Rudenko N, Daniel M, Holubová J: Extension of Ixodes ricinus ticks and agents of tick-borne diseases to mountain areas in the Czech Republic. Int J Med Microbiol 2006, 296:48-53.
  • [10]Gatewood AG, Liebman KA, Vourc’h G, Bunikis J, Hamer SA, Cortinas R: Climate and tick seasonality are predictors of Borrelia burgdorferi genotype distribution. Appl Environ Microbiol 2009, 75:2476-2483.
  • [11]Estrada-Peña A, Ortega C, Sánchez N, DeSimone L, Sudre B, Suk JE, Semenza JC: Correlation of Borrelia burgdorferi sensu lato prevalence in questing Ixodes ricinus ticks with specific abiotic traits in the western Palearctic. App Environ Microbiol 2011, 77:3838-3845.
  • [12]Estrada-Peña A, Vatansever Z, Gargili A, Ergonul O: The trend towards habitat fragmentation is the key factor driving the spread of Crimean-Congo haemorrhagic fever. Epidemiol Infect 2010, 138:1194-1203.
  • [13]Randolph SE, Rogers DJ: Fragile transmission cycles of tick-borne encephalitis virus may be disrupted by predicted climate change. Proc R Soc Lond B 2000, 267:1741-1744.
  • [14]Caminade C, Medlock JM, Ducheyne E, McIntyre KM, Leach S, Baylis S, Morse AP: Suitability of European climate for the Asian tiger mosquito Aedes albopictus: recent trends and future scenarios. J R Soc Interface 2012, 9:2708-2717.
  • [15]Yang G-J, Brook BW, Bradshaw CJA: Predicting the timing and magnitude of tropical mosquito population peaks for maximizing control efficiency. PLoS Negl Trop Dis 2009, 3:e385. doi:10.1371/journal.pntd.0000385
  • [16]Hartemink N, Vanwambeke SO, Heesterbeek H, Rogers D, Morley D: Integrated mapping of establishment risk for emerging vector-borne infections: A case study of canine Leishmaniasis in southwest France. PLoS One 2011, 6:e20817. doi:10.1371/journal.pone.0020817
  • [17]Estrada-Peña A, Farkas R, Jaenson TGT, Koenen F, Madder M, Pascucci I: Association of environmental traits with the geographic ranges of ticks (Acari: Ixodidae) of medical and veterinary importance in the western Palearctic. A digital data set. Exp Appl Acarol 2013, 59:351-366.
  • [18]Fisher D, Thomas SM, Niemitz F, Reineking B, Beierkuhnlein C: Projection of climate suitability for Aedes albopictus Skuse (Culicidae) in Europe under climate change conditions. Glob Planet Change 2011, 78:54-65. doi:10.1016/j.gloplacha.2011.05.008
  • [19]Estrada-Peña A, Thuiler W: An assessment of the effect of data partitioning on the performance of modelling algorithms for habitat suitability for ticks. Med Vet Entomol 2008, 22:248-257.
  • [20]Scharlemann JPW, Benz D, Hay SI, Purse BV, Tatem AJ: Global data for ecology and epidemiology: A novel algorithm for temporal Fourier processing MODIS data. PLoS One 2008, 3:e1408. doi:10.1371/journal.pone.0001408
  • [21]Randolph SE, Green RM, Hoodless AN, Peacey MF: An empirical quantitative framework for the seasonal population dynamics of the tick Ixodes ricinus. Int J Parasitol 2002, 32:979-989.
  • [22]Legendre P: Spatial autocorrelation: trouble or new paradigm? Ecology 1993, 74:1659-1673.
  • [23]Randin CF, Dirnböck T, Dullinger S, Zimmermann NE, Zappa M, Guisan A: Are niche-based species distribution models transferable in space? J Biogeogr 2006, 33:1689-1703.
  • [24]Storch D, Konvicka M, Benes J, Martinková J, Gaston KJ: Distribution patterns in butterflies and birds of the Czech Republic: separating effects of habitat and geographical position. J Biogeogr 2003, 30:1195-1205.
  • [25]Segurado P, Araújo MB, Kunin WE: Consequences of spatial autocorrelation for niche-based models. J Appl Ecol 2006, 43:433-444.
  • [26]Keitt TH, Bjørnstad ON, Dixon PM, Citron-Pousty S: Accounting for spatial pattern when modeling organism-environment interactions. Ecography 2002, 25:616-625.
  • [27]Segurado P, Araujo MB: An evaluation of methods for modelling species distributions. J Biogeog 2004, 31:1555-1568.
  • [28]Lichstein JW, Simons TR, Shriner SA, Franzreb KE: Spatial autocorrelation and autoregressive models in ecology. Ecol Monographs 2002, 72:445-463.
  • [29]Guisan A, Thuiller W: Predicting species distribution: offering more than simple habitat models. Ecol Lett 2005, 8:993-1009.
  • [30]Kuemmerle T, Perzanowski K, Chaskovskyy O, Ostapowicz K, Halada L, Bashta AT, Radeloff VC: European bison habitat in the Carpathian Mountains. Biol Conserv 2010, 143:908-916.
  • [31]Baldwin RA: Use of maximum entropy modeling in wildlife research. Entropy 2009, 11:854-866.
  • [32]Elith J, Burgman MA, Regan HM: Mapping epistemic uncertainties and vague concepts in predictions of species distributions. Ecol Modell 2002, 157:313-329.
  • [33]Randolph SE: Ticks are not insects: consequences of contrasting vector biology for transmission potential. Parasitol Today 2002, 14:186-192.
  • [34]King MD, Menzel WP, Kaufman YJ, Tanre D, Bo-Cai G, Platnick S, Ackerman SA, Remer LA, Pincus R, Hubanks PA: Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS. IEEE Transactions Geoscience Remote Sens 2003, 41:442-458.
  • [35]Berger KA, Wang Y, Mather TN: MODIS-derived land surface moisture conditions for monitoring blacklegged tick habitat in southern New England. Int J Remote Sens 2013, 34:73-85.
  • [36]Sandholt I, Rasmussen K, Andersen J: A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sens Environ 2002, 79:213-224.
  • [37]Randolph SE: Ticks and tick-borne disease systems in space and from space. Adv Parasitol 2000, 47:217-243.
  • [38]Glass GE, Schwartz BS, Morgan JM, Johnson DT, Noy PM, Israel E: Environmental risk factors for Lyme disease identified with geographic information systems. Am J Public Hlth 1995, 85:944-948.
  • [39]Estrada-Peña A, Venzal JM: Climate niches of tick species in the Mediterranean region: modeling of occurrence data, distributional constraints, and impact of climate change. J Med Entomol 2007, 44:1130-1138.
  • [40]Guerra M, Walker E, Jones C, Paskewitz S, Cortinas MR, Stancil A, Beck L, Bobo M, Kitron U: Predicting the risk of Lyme disease: habitat suitability for Ixodes scapularis in the north central United States. Emerg Infect Dis 2002, 8:289-297.
  • [41]Ogden NH, Barker IK, Beauchamp G, Brazeau S, Charron DF, Maarouf A, Morshed MG, O’Callaghan CJ, Thompson RA, Waltner-Toews D, Waltner-Toews M, Lindsay LR: Investigation of ground level and remote-sensed data for habitat classification and prediction of survival of Ixodes scapularis in habitats of southeastern Canada. J Med Entomol 2009, 43:403-414.
  • [42]Estrada-Peña A, Martinez JM, Sanchez Acedo C, Quilez J, Del Cacho E: Phenology of the tick, Ixodes ricinus, in its southern distribution range (central Spain). Med Vet Entomol 2004, 18:387-397.
  • [43]Wiens JJ: Speciation and ecology revisited: phylogenetic niche conservatism and the origin of species. Evolution 2004, 58:193-197.
  • [44]Wisz M, Guisan A: Do pseudo-absence selection strategies influence species distribution models and their predictions? an information-theoretic approach based on simulated data. BMC Ecol 2009, 9:8. BioMed Central Full Text
  • [45]Lobo JM, Jiménez-Valverde A, Real R: AUC: a misleading measure of the performance of predictive distribution models. Global Ecol Biogeog 2008, 17:145-151.
  • [46]Anderson R, Dudík M, Ferrier S, Guisan AJ, Hijmans R, Huettmann F, Zimmermann N: Novel methods improve prediction of species’ distributions from occurrence data. Ecography 2006, 29:129-151.
  • [47]Vanderwal J, Shoo LP, Graham C, Williams SE: Selecting pseudo-absence data for presence-only distribution modeling: how far should you stray from what you know? Ecol Modell 2009, 220:589-594.
  • [48]Araújo MB, Williams PH: Selecting areas for species persistence using occurrence data. Biological Conserv 2000, 96:331-345.
  • [49]Merow C, Smith MJ, Silander JA: A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 2013, 36:1058-1069. published online doi: 10.1111/j.1600-0587.2013.07872.x
  • [50]Diuk-Wasser MA, Gatewood AG, Cortinas MR, Yaremych-Hamer S, Tsao J, Kitron U, Hickling G, Brownstein JS, Walker E, Piesman J, Fish D: Spatiotemporal patterns of host-seeking Ixodes scapularis nymphs (Acari: Ixodidae) in the United States. J Med Entomol 2006, 43:166-176.
  • [51]Perret JL, Guigoz E, Rais O, Gern L: Influence of saturation deficit and temperature on Ixodes ricinus tick questing activity in a Lyme borreliosis-endemic area (Switzerland). Parasitol Res 2000, 86:554-557.
  • [52]Estrada-Peña A: Geostatistics as predictive tools to estimate Ixodes ricinus (Acari: Ixodidae) habitat suitability in the western Palearctic from AVHRR satellite imagery. Exp Appl Acarol 1999, 23:337-349.
  • [53]Immerzel WW, Quiroz RA, De Jong SM: Understanding precipitation patterns and land use interaction in Tibet using harmonic analysis of SPOT VGT- S10 NDVI time series. Int J Rem Sens 2005, 26:2281-2296.
  • [54]R Development Core Team: R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2012. ISBN 3-900051-07-0, URL http://www.R-project.org/ webcite
  • [55]Hijmans RJ, van Etten J: Raster: Geographic data analysis and modeling. R package version 2.0-41. 2012. http://CRAN.R-project.org/package=raster webcite
  • [56]Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A: Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 2005, 25:1965-1978.
  • [57]Kriticos DJ, Webber BL, Leriche A, Ota N, Macadam I, Bathols J, Scott JK: CliMond: global high-resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods Ecol Evol 2012, 3:53-64.
  • [58]Philips SJ, Dudík M: Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 2008, 31:161-175.
  • [59]Elith J, Graham CH: Do they? How do they? WHY do they differ? On finding reasons for differing performances of species distribution models. Ecography 2009, 32:66-77.
  • [60]Swets JA: Measuring the accuracy of diagnostic systems. Science 1988, 240:1285-1293.
  • [61]Pearce J, Ferrier S: Evaluating the predictive performance of habitat models developed using logistic regression. Ecol Modell 2000, 133:225-245.
  • [62]Manel S, Williams HC, Ormerod SJ: Evaluating presence–absence models in ecology: the need to account for prevalence. J Appl Ecol 2001, 38:921-931.
  • [63]McPherson JANA, Jetz W, Rogers DJ: The effects of species’ range sizes on the accuracy of distribution models: ecological phenomenon or statistical artefact? J Appl Ecol 2004, 41:811-823.
  • [64]Peterson AT, Papeş M, Soberón J: Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol Modell 2008, 213:63-72.
  • [65]Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, Müller M: pROC: an open-source package for R and S + to analyze and compare ROC curves. BMC Bioinformatics 2001, 12:77. doi: 10.1186/1471-2105-12-77 http://www.biomedcentral.com/1471-2105/12/77/ webcite
  • [66]Liu C, Berry PM, Dawson TP, Pearson RG: Selecting thresholds of occurrence in the prediction of species distributions. Ecography 2005, 28:385-393.
  • [67]Stockwell DRB, Peters DP: The GARP modelling system: Problems and solutions to automated spatial prediction. Int J Geogr Inform Syst 1999, 13:143-158.
  • [68]Riley SJ, DeGloria SD, Elliot R: A terrain ruggedness index that quantifies topographic heterogeneity. Intermountain J Sci 1999, 5:1-4.
  • [69]Lennon JJ: Red-shifts and red herrings in geographical ecology. Ecography 2000, 23:101-113.
  • [70]Rossi RE, Mulla DJ, Journel AG, Franz EH: Geostatistical tools for modeling and interpreting ecological spatial dependence. Ecol Monographs 1992, 62:277-314.
  • [71]Dormann CF, McPherson JM, Araujo MB, Bivand R, Bolliger J: Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 2007, 30:609-628.
  • [72]Cawsey EM, Austin MP, Baker BL: Regional vegetation mapping in Australia: a case study in the practical use of statistical modelling. Biodivers Conserv 2002, 11:2239-2274.
  文献评价指标  
  下载次数:13次 浏览次数:24次