期刊论文详细信息
Remote Sensing
Comparison of Latent Heat Flux Using Aerodynamic Methods and Using the Penman–Monteith Method with Satellite-Based Surface Energy Balance
Ramesh Dhungel2  Richard G. Allen1  Ricardo Trezza1 
[1] Kimberly Research and Extension Center, University of Idaho, Kimberly, ID 83341, USA; E-Mails:;School of Engineering, University of California, Merced, CA 95343, USA
关键词: surface resistance;    evapotranspiration;    surface temperature;    Penman–Monteith;    surface energy balance;   
DOI  :  10.3390/rs6098844
来源: mdpi
PDF
【 摘 要 】

A surface energy balance was conducted to calculate the latent heat flux (λE) using aerodynamic methods and the Penman–Monteith (PM) method. Computations were based on gridded weather and Landsat satellite reflected and thermal data. The surface energy balance facilitated a comparison of impacts of different parameterizations and assumptions, while calculating λE over large areas through the use of remote sensing. The first part of the study compares the full aerodynamic method for estimating latent heat flux against the appropriately parameterized PM method with calculation of bulk surface resistance (rs). The second part of the study compares the appropriately parameterized PM method against the PM method, with various relaxations on parameters. This study emphasizes the use of separate aerodynamic equations (latent heat flux and sensible heat flux) against the combined Penman–Monteith equation to calculate λE when surface temperature (Ts) is much warmer than air temperature (Ta), as will occur under water stressed conditions. The study was conducted in southern Idaho for a 1000-km2 area over a range of land use classes and for two Landsat satellite overpass dates. The results show discrepancies in latent heat flux (λE) values when the PM method is used with simplifications and relaxations, compared to the appropriately parameterized PM method and full aerodynamic method. Errors were particularly significant in areas of sparse vegetation where differences between Ts and Ta were high. The maximum RMSD between the correct PM method and simplified PM methods was about 56 W/m2 in sparsely vegetated sagebrush desert where the same surface resistance was applied.

【 授权许可】

CC BY   
© 2014 by the authors; licensee MDPI, Basel, Switzerland

【 预 览 】
附件列表
Files Size Format View
RO202003190021379ZK.pdf 15397KB PDF download
  文献评价指标  
  下载次数:11次 浏览次数:13次